Skip to main content
Log in

Assessing the dispersive and electrostatic components of the selenium–aromatic interaction energy by DFT

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Selenium has been increasingly recognized as an important element in biological systems, which participates in numerous biochemical processes in organisms, notably in enzyme reactions. Selenium can substitute sulfur of cysteine and methionine to form their selenium analogues, selenocysteine (Sec) and selenomethionine (SeM). The nature of amino acid pockets in proteins is dependent on their composition and thus different non-covalent forces determine the interactions between selenium of Sec or SeM and other functional groups, resulting in specific biophysical behavior. The discrimination of selenium toward sulfur has been reported. In order to elucidate the difference between the nature of S-π and Se-π interactions, we performed extensive DFT calculations of dispersive and electrostatic contributions of Se-π interactions in substituted benzenes/hydrogen selenide (H2Se) complexes. The results are compared with our earlier reported S-π calculations, as well as with available experimental data. Our results show a larger contribution of dispersive interactions in Se-π systems than in S-π ones, which mainly originate from the attraction between Se and substituent groups. We found that selenium exhibits a strong interaction with aromatic systems and may thus play a significant role in stabilizing protein folds and protein–inhibitor complexes. Our findings can also provide molecular insights for understanding enzymatic specificity discrimination between single selenium versus a sulfur atom, notwithstanding their very similar chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In this text we shall use explicit notation: M(lone pair)····π(aryl), and M–H····π(aryl) (where M stands for a chalcogen atom) whenever we refer to the specific or dominant type of noncovalent interaction studied in this work, and an en-dash or other symbol(s) for interactions of unspecified type, and/or citations from other authors.

References

  1. Hatfield DL, Schweizer U, Tsuji PA, Gladyshev VN (2016) Selenium— its molecular biology and role in human health. Springer, Berlin

  2. Brigelius-Flohe R, Sies H (2016) Diversity of selenium functions in health and disease, oxidative stress and disease, no. 38. CRC, Boca Raton

    Google Scholar 

  3. Arnér ESJ (2010) Selenoproteins — what unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res 316:1296–1303. doi:10.1016/j.yexcr.2010.02.032

    Article  Google Scholar 

  4. Cupp-Sutton KA, Ashby MT (2016) Biological chemistry of hydrogen selenide. Antioxidants 5:42–60. doi:10.3390/antiox5040042

    Article  Google Scholar 

  5. Johansson L, Gafvelin G, Arnér ESJ (2005) Selenocysteine in proteins–properties and biotechnological use. Biochim Biophys Acta 1726:1–13. doi:10.1016/j.bbagen.2005.05.010

    Article  CAS  Google Scholar 

  6. Johnson DW, Hof F (2016) Aromatic interactions: frontiers in knowledge and application, monographs in supramolecular chemistry, no. 20. The Royal Society of Chemistry, UK

    Book  Google Scholar 

  7. Waters ML (2004) Aromatic interactions in peptides: impact on structure and function. Biopolymers 76:435–445. doi:10.1002/bip.20144

  8. Hartman I, Raia CA, Zauhar RJ (2006) Evidence for a strong selenium–aromatic interaction derived from crystallographic data and ab initio quantum chemical calculations. Biopolymers 83:595–613. doi:10.1002/bip.20144

    Article  CAS  Google Scholar 

  9. Saberinasab M, Salehzadeh S, Maghsoud Y, Bayat M (2016) The significant effect of electron donating and electron withdrawing substituents on nature and strength of an intermolecular Se∙∙∙∙πinteraction. A theoretical study. Comp Theor Chem 1078:9–15. doi:10.1016/j.comptc.2015.12.009

    Article  CAS  Google Scholar 

  10. Saberinasab M, Salehzadeh S, Solimannejad M (2016) The effect of a strong cation∙∙∙∙π interaction on a weak selenium∙∙∙∙π interaction: a theoretical study. Comp Theor Chem 1092:41–46. doi:10.1016/j.comptc.2016.07.027

    Article  CAS  Google Scholar 

  11. Caracelli I, Haiduc I, Zukerman-Schpector J, Tiekink ERT (2014) Supramolecular architectures based on M(lone pair)···π(arene) interactions for M=Se and Te. In: Patai S, Rappoport Z (eds) Chemistry of organic selenium and tellurium compounds, 4th edn. Wiley, New York, pp 973–988

    Google Scholar 

  12. Caracelli I, Haiduc I, Zukerman-Schpector J, Tiekink ERT (2013) Delocalised antimony(lone pair)- and bismuth-(lone pair)···π (arene) interactions: supramolecular assembly and other considerations. Coord Chem Rev 257:2863–2879. doi:10.1016/j.ccr.2013.05.022

    Article  CAS  Google Scholar 

  13. Zukerman-Schpector J, Haiduc I, Tiekink ERT (2012) Supramolecular self-assembly of transition metal carbonyl molecules through M-CO(lone pair)···π (arene) interactions. Adv Phys Org Chem 60:49–92. doi:10.1016/B978-0-12-396970-5.00002-5

    CAS  Google Scholar 

  14. Caracelli I, Zukerman-Schpector J, Tiekink ERT (2012) Supramolecular aggregation patterns based on the bio-inspired Se (lone pair) ⋯ π (aryl) synthon. Coord Chem Rev 256:412–438. doi:10.1016/j.ccr.2011.10.021

    Article  CAS  Google Scholar 

  15. Caracelli I, Haiduc I, Zukerman-Schpector J, Tiekink ERT (2016) A new non-covalent bonding mode in supramolecular chemistry: main group element lone-pair···π(arene) interactions. In: Johnson DW, Hof F (eds) Aromatic interactions: frontiers in knowledge and application, monographs in supramolecular chemistry, no. 20. The Royal Society of Chemistry, UK, pp 89–124

    Google Scholar 

  16. Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biologicalrecognition: energetics and structures. Angew Chem Int Ed 50:4808–4842. doi:10.1002/anie.201007560

    Article  CAS  Google Scholar 

  17. Wheeler SE (2013) Understanding substituent effects in noncovalent interactions involving aromatic rings. Acc Chem Res 46:1029–1038. doi:10.1021/ar300109n

    Article  CAS  Google Scholar 

  18. Wheeler SE, Houk KN (2008) Substituent effects in the benzene dimer are due to direct interactions of the substituents with the unsubstituted benzene. J Am Chem Soc 130:10854–10855. doi:10.1021/ja802849j

    Article  CAS  Google Scholar 

  19. Wheeler SE (2012) Understanding substituent effects in noncovalent interactions involving aromatic rings. Acc Chem Res 46:1029–1038. doi:10.1021/ar300109n

    Article  Google Scholar 

  20. Senćanski M, Došen-Mićović L, Šukalović V, Kostić-Rajačić S (2015) Theoretical insight into sulfur–aromatic interactions with extension to D2 receptor activation mechanism. Struct Chem 26:1139–1149. doi:10.1007/s11224-015-0574-z

    Article  Google Scholar 

  21. Ringer AL, Senenko A, Sherrill CD (2007) Models of S/π interactions in protein structures: comparison of the H2S–benzene complex with PDB data. Protein Sci 16:2216–2223. doi:10.1110/ps.073002307

    Article  CAS  Google Scholar 

  22. Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195. doi:10.1021/cr00002a004

    Article  CAS  Google Scholar 

  23. Cheng Q, Sandalova T, Lindqvist Y, Arnér ESJ (2009) Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1. J Biol Chem 284:3998–4008. doi:10.1074/jbc.M807068200

    Article  CAS  Google Scholar 

  24. Hassan AE, Sheng J, Jiang J, Zhang JW, Huang Z (2009) Synthesis and crystallographic analysis of 5-Se-thymidine DNAs. Org Lett 11:2503–2506. doi:10.1021/ol9004867

    Article  CAS  Google Scholar 

  25. Schaefer-Ramadan S, Thorpe C, Rozovsky S (2014) Site-specific insertion of selenium into the redoxactive disulfide of the flavoprotein augmenter of liver regeneration. Arch Biochem Biophys 548:60–65. doi:10.1016/j.abb.2014.02.001

    Article  CAS  Google Scholar 

  26. Schaefer SA, Dong M, Rubenstein RP, Wilkie WA, Bahnson BJ, Thorpe C, Rozovsky S (2013) (77)Se enrichment of proteins expands the biological NMR toolbox. J Mol Biol 425:222–231. doi:10.1016/j.jmb.2012.11.011

    Article  CAS  Google Scholar 

  27. Mander L, Liu HW (2010) Comprehensive natural products II: chemistry and biology, vol. 1. Newnes, Oxford

  28. Daithankar VN, Schaefer SA, Dong M, Bahnson BJ, Thorpe C (2010) Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy. Biochemistry-US 49:6737–6745. doi:10.1021/bi100912m

    Article  CAS  Google Scholar 

  29. Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Tokatlidis K (2012) An electrontransfer path through an extended disulfide relay system: the case of the redox protein ALR. J Am Chem Soc 134:1442–1445. doi:10.1021/ja209881f

    Article  CAS  Google Scholar 

  30. Dmitrenko O, Thorpe C, Bach RD (2003) Effect of a charge-transfer interaction on the catalytic activity of Acyl-CoA dehydrogenase: a theoretical study of the role of oxidized flavin. J Phys Chem B 107:13229–13236. doi:10.1021/jp0348631

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision E.01. Gaussian Inc., Wallingford

    Google Scholar 

  32. Grimme S (2006) Semiempirical GGA type density functional constructed with a long-range dispersion correction. J Comp Chem 27:1787–1799. doi:10.1002/jcc.20495

    Article  CAS  Google Scholar 

  33. Schaefer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577. doi:10.1063/1.463096

    Article  CAS  Google Scholar 

  34. Schaefer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835. doi:10.1063/1.467146

    Article  CAS  Google Scholar 

  35. Dunning Jr TH, Hay PJ (1977) Gaussian basis sets for molecular calculations. In: Schaefer HF (ed) Modern theoretical chemistry, vol 3. Plenum, New York, pp 1–28

    Google Scholar 

  36. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283. doi:10.1063/1.448799

    Article  CAS  Google Scholar 

  37. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298. doi:10.1063/1.448800

    Article  CAS  Google Scholar 

  38. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310. doi:10.1063/1.448975

    Article  CAS  Google Scholar 

  39. PARADOX cluster at the Scientific Computing Laboratory of the Institute of Physics Belgrade, supported in part by the Serbian Ministry of Education and Science under project No. ON171017, and by the European Commission under FP7 projects HP-SEE, PRACE-1IP, PRACE-2IP, EGI-InSPIRE

Download references

Acknowledgments

This work was financially supported by the Serbian Ministry of Education, Science and Technological Development, Republic of Serbia, Contracts No 173001 and 172035, and COST Action CM1405, Molecules in Motion (MOLIM). The authors would like to thank Prof. Ljiljana Došen-Mićović for help with this project, and the anonymous referee for valuable suggestions that improved the clarity of the manuscript. Graphs were rendered in Origin 8, figures were made using Discovery Studio 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Senćanski.

Electronic supplementary material

ESM 1

(PDF 335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senćanski, M., Djordjević, I. & Grubišić, S. Assessing the dispersive and electrostatic components of the selenium–aromatic interaction energy by DFT. J Mol Model 23, 162 (2017). https://doi.org/10.1007/s00894-017-3330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3330-z

Keywords

Navigation