Skip to main content
Log in

The inner-induced effects of YCN in C76 on the structures and nonlinear optical properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Very recently, an unprecedented novel monometallic cluster of fullerenes entrapping a yttrium cyanide (YCN) cluster inside a popular C82 cage YCN@Cs(6)-C82 was synthesized and characterized. Inspired by this investigation, four non-IPR YCN@C1(17459)-C76, YCN@C2v(19138)-C76, YCN@C2(17646)-C76, and YCN@C1(17894)-C76 (1, 2, 3, and 4) containing a pair of adjacent pentagons are designed to explore the encapsulated molecular effect on their interaction energies and nonlinear optical properties. The interaction energy (E int) values of 1, 2, 3, and 4 are −481.35 (1), −477.91 (2), −482.04 (3), −482.69 (4) kcal mol−1, respectively, which shows that the E int value of 4 is the largest. Furthermore, the electron-transfer is mainly from the YCN to C76 cage. When YCN is encapsulated into C76 cage, we can find that the α0 values of the four molecules are very close, ranging from 6.50 × 102 to 6.65 × 102 au. Significantly, the first hyperpolarizabilities are in relation to the encapsulated molecular: 1.63 × 103 (1) > 8.03 × 102 (2) > 7.76 × 102 (4) > 4.86 × 102 au (3), the results show that the βtot value of 1 is the largest. Besides this, the encapsulation of the YCN to C76 cage brings some distinctive changes in its UV–vis spectra along with its other electronic properties that might be used by the experimentalists to develop the potential nonlinear optical nanomaterials based on endohedral metallofullerenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Franken PA, Hill AE, Peters CW, Weinreich G (1961) Generation of optical harmonics. Phys Rev Lett 7:118–119

  2. Eaton DF (1991) Nonlinear optical materials. Science 253:281–287

  3. Coe BJ, Jones LA, Harris JA, Brunschwig BS, Asselberghs I, Clays K et al. (2003) Highly unusual effects of π-conjugation extension on the molecular linear and quadratic nonlinear optical properties of ruthenium(II) ammine complexes. J Am Chem Soc 125:862–863

  4. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities Quantum chemical aspects. Chem Rev 94:195–242

  5. Dalton LR, Harper AW, Ghosn R, Steier WH, Ziari M, Fetterman H et al. (1995) Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics. Chem Mater 7:1060–1081

  6. Okuno K, Shigeta Y, Kishi R, Nakano M (2013) Photochromic switching of diradical character: design of efficient nonlinear optical switches. J Phys Chem Lett 4:2418–2422

  7. Nakano M, Minami T, Yoneda K, Muhammad S, Kishi R, Shigeta Y et al. (2011) Giant enhancement of the second hyperpolarizabilities of open-shell singlet polyaromatic diphenalenyl diradicaloids by an external electric field and donor–acceptor substitution. J Phys Chem Lett 2:1094–1098

  8. Xu H-L, Li Z-R, Wu D, Wang B-Q, Li Y, Gu FL et al. (2007) Structures and large NLO responses of new electrides: Li-doped fluorocarbon chain. J Am Chem Soc 129:2967–2970

  9. Xu H-L, Li Z-R, Su Z-M, Muhammad S, Gu FL, Harigaya K (2009) Knot-isomers of Möbius cyclacene: how does the number of knots influence the structure and first hyperpolarizability? J Phys Chem C 113:15380–15383

  10. Zhong R-L, Zhang J, Muhammad S, Hu Y-Y, Xu H-L, Su Z-M (2011) Boron/nitrogen substitution of the central carbon atoms of the biphenalenyl diradical π dimer: a novel 2e–12c bond and large NLO responses. Chem Eur J 17:11773–11779

  11. Zhong R-L, Xu H-L, Su Z-M, Li Z-R, Sun S-L, Qiu Y-Q (2012) Spiral intramolecular charge transfer and large first hyperpolarizability in Möbius cyclacenes: new insight into the localized π electrons. ChemPhysChem 13:2349–2353

  12. Castet F, Rodriguez V, Pozzo J-L, Ducasse L, Plaquet A, Champagne B (2013) Design and characterization of molecular nonlinear optical switches. Acc Chem Res 46:2656–2665

  13. Champagne B, Plaquet A, Pozzo J-L, Rodriguez V, Castet F (2012) Nonlinear optical molecular switches as selective cation sensors. J Am Chem Soc 134:8101–8103

  14. Stoumpos CC, Frazer L, Clark DJ, Kim YS, Rhim SH, Freeman AJ et al. (2015) Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J Am Chem Soc 137:6804–6819

  15. Jie W, Chen X, Li D, Xie L, Hui YY, Lau SP et al. (2015) Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets. Angew Chem Int Ed 54:1185–1189

  16. Jiang Y, Gindre D, Allain M, Liu P, Cabanetos C, Roncali J (2015) A mechanofluorochromic push–pull small molecule with aggregation-controlled linear and nonlinear optical properties. Adv Mater 27:4285–4289

  17. Champagne B, Guthmuller J, Perreault F, Soldera A (2012) Theoretical design of the molecular structure of bent-core mesogens with large second-order nonlinear optical properties. J Phys Chem C 116:7552–7560

  18. Liu C-G, Guan W, Yan L-K, Su Z-M, Song P, Wang E-B (2009) Second-order nonlinear optical properties of transition-metal-trisubstituted polyoxometalate—diphosphate complexes: a donor − conjugated bridge − acceptor paradigm for totally inorganic nonlinear optical materials. J Phys Chem C 113:19672–19676

  19. Matulkova I, Cihelka J, Pojarova M, Fejfarova K, Dusek M, Vanek P et al. (2012) A new series of 3,5-diamino-1,2,4-triazolium(1+) inorganic salts and their potential in crystal engineering of novel NLO materials. CrystEngComm 14:4625–4636

    Article  CAS  Google Scholar 

  20. Hrobarik P, Zahradnik P, Fabian WMF (2004) Computational design of benzothiazole-derived push-pull dyes with high molecular quadratic hyperpolarizabilities. Phys Chem Chem Phys 6:495–502

    Article  CAS  Google Scholar 

  21. Hrobárik P, Sigmundová I, Zahradník P, Kasák P, Arion V, Franz E et al. (2010) Molecular engineering of benzothiazolium salts with large quadratic hyperpolarizabilities: can auxiliary electron-withdrawing groups enhance nonlinear optical responses? J Phys Chem C 114:22289–22302

  22. Hrobárik P, Hrobáriková V, Sigmundová I, Zahradník P, Fakis M, Polyzos I et al. (2011) Benzothiazoles with tunable electron-withdrawing strength and reverse polarity: a route to triphenylamine-based chromophores with enhanced two-photon absorption. J Org Chem 76:8726–8736

  23. Marder SR, Gorman CB, Meyers F, Perry JW, Bourhill G, Brédas J-L et al. (1994) A unified description of linear and nonlinear polarization in organic polymethine dyes. Science 265:632–635

  24. Xu H-L, Li Z-R, Wang F-F, Wu D, Harigaya K, Gu FL (2008) What is the shape effect on the (hyper)polarizabilities? A comparison study on the Möbius, normal cyclacene, and linear nitrogen-substituted strip polyacenes. Chem Phys Lett 454:323–326

  25. Xu H-L, Li Z-R, Wu D, Ma F, Li Z-J, Gu FL (2009) Lithiation and Li-Doped effects of [5]cyclacene on the static first hyperpolarizability. J Phys Chem C 113:4984–4986

  26. Chen W, Li Z-R, Wu D, Li Y, Sun C-C, Gu FL (2005) The Structure and the large nonlinear optical properties of Li@Calix[4]pyrrole. J Am Chem Soc 127:10977–10981

  27. Liu Z-B, Zhou Z-J, Li Y, Li Z-R, Wang R, Li Q-Z et al. (2010) Push-pull electron effects of the complexant in a Li atom doped molecule with electride character: a new strategy to enhance the first hyperpolarizability. Phys Chem Chem Phys 12:10562–10568

  28. Li Z-J, Wang F-F, Li Z-R, Xu H-L, Huang X-R, Wu D et al. (2009) Large static first and second hyperpolarizabilities dominated by excess electron transition for radical ion pair salts M2 • + TCNQ• - (M = Li, Na, K). Phys Chem Chem Phys 11:402–408

  29. Wang L-J, Sun S-L, Zhong R-L, Liu Y, Wang D-L, Wu H-Q et al. (2013) The encapsulated lithium effect of Li@C60Cl8 remarkably enhances the static first hyperpolarizability. RSC Adv 3:13348–13352

  30. Ma F, Li Z-R, Zhou Z-J, Wu D, Li Y, Wang Y-F et al. (2010) Modulated nonlinear optical responses and charge transfer transition in endohedral fullerene dimers Na@C60C60@F with n-Fold Covalent Bond (n = 1, 2, 5, and 6) and long range ion bond. J Phys Chem C 114:11242–11247

  31. Gao F-W, Gao Y, Wang L-J, Xu H-L, Sun S-L, Su Z-M (2015) “Dancing inside the ball”: the structures and nonlinear optical properties of three Sc2S@C3v(8)-C82 isomers. J Mol Model 21:1–8

    Article  Google Scholar 

  32. Chai Y, Guo T, Jin C, Haufler RE, Chibante LPF, Fure J et al. (1991) Fullerenes with metals inside. J Phys Chem 95:7564–7568

    Article  CAS  Google Scholar 

  33. Wilson LJ, Cagle DW, Thrash TP, Kenne SJ, Mirzadeh S, Alford M, Ehrhardt J et al. (1999) Metallofullerene drug design. Coord Chem Rev 190–192:199–207

    Article  Google Scholar 

  34. Lu X, Akasaka T, Nagase S (2011) Chemistry of endohedral metallofullerenes: the role of metals. Chem Commun 47:5942–5957

    Article  CAS  Google Scholar 

  35. Lu X, Akasaka T, Nagase S (2013) Carbide cluster metallofullerenes: structure, properties, and possible origin. Acc Chem Res 46:1627–1635

  36. Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113

  37. Wang LS, Alford JM, Chai Y, Diener M, Zhang J, McClure SM et al. (1993) The electronic structure of Ca@C60. Chem Phys Lett 207:354–359

  38. Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyata Y et al. (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2:678–683

  39. Aoyagi S, Sado Y, Nishibori E, Sawa H, Okada H, Tobita H et al. (2012) Rock-salt-type crystal of thermally contracted C60 with encapsulated lithium cation. Angew Chem Int Ed 51:3377–3381

  40. Fukuzumi S, Ohkubo K, Kawashima Y, Kim DS, Park JS, Jana A et al. (2011) Ion-controlled on–off switch of electron transfer from tetrathiafulvalene calix[4]pyrroles to Li+@C60. J Am Chem Soc 133:15938–15941

  41. Tang C, Fu S, Deng K, Yuan Y, Tan W, Huang D et al. (2008) The density functional calculations on the structural stability, electronic properties, and static linear polarizability of the endohedral metallofullerene Ba@C74. J Mol Struct (THEOCHEM) 867:111–115

  42. Wang C-R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E et al. (2000) Materials science: C66 fullerene encaging a scandium dimer. Nature 408:426–427

  43. Yang T, Zhao X, Xu Q, Zhou C, He L, Nagase S (2011) Non-IPR endohedral fullerene Yb@C76: density functional theory characterization. J Mater Chem 21:12206–12209

    Article  CAS  Google Scholar 

  44. Yang T, Zhao X, Xu Q, Zheng H, Wang W-W, Li S-T (2012) Probing the role of encapsulated alkaline earth metal atoms in endohedral metallofullerenes M@C76 (M = Ca, Sr, and Ba) by first-principles calculations. Dalton Trans 41:5294–5300

    Article  CAS  Google Scholar 

  45. Hao Y, Feng L, Xu W, Gu Z, Hu Z, Shi Z et al. (2015) Sm@C2v(19138)-C76: a non-IPR cage stabilized by a divalent metal ion. Inorg Chem 54:4243–4248

  46. Suzuki M, Mizorogi N, Yang T, Uhlik F, Slanina Z, Zhao X et al. (2013) La2@Cs(17 490)-C76: a new non-ipr dimetallic metallofullerene featuring unexpectedly weak metal–pentalene interactions. Chem Eur J 19:17125–17130

  47. Meng Q-Y, Wang D-L, Xin G, Li T-C, Hou D-Y (2014) Linear monometallic cyanide cluster fullerenes ScCN@C76 and YCN@C76: A theoretical prediction. Comput Theor Chem 1050:83–88

    Article  CAS  Google Scholar 

  48. Campanera JM, Bo C, Olmstead MM, Balch AL, Poblet JM (2002) Bonding within the Endohedral Fullerenes Sc3N@C78 and Sc3N@C80 as determined by density functional calculations and reexamination of the crystal structure of {Sc3N@C78} · Co(OEP)} · 1.5(C6H6) · 0.3(CHCl3). J Phys Chem A 106:12356–12364

  49. Aroua S, Garcia-Borràs M, Bölter MF, Osuna S, Yamakoshi Y (2015) Endohedral metal-induced regioselective formation of bis-prato adduct of Y3N@I h -C80 and Gd3N@I h -C80. J Am Chem Soc 137:58–61

  50. Stevenson S, Mackey MA, Stuart MA, Phillips JP, Easterling ML, Chancellor CJ et al. (2008) A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. synthesis, isolation, and structural characterization of Sc43-O)2@I h -C80. J Am Chem Soc 130:11844–11845

  51. Zheng H, Zhao X, He L, Wang W-W, Nagase S (2014) Quantum chemical determination of novel C82 monometallofullerenes involving a heterogeneous group. Inorg Chem 53:12911–12917

  52. Wu B, Hu J, Cui P, Jiang L, Chen Z, Zhang Q et al. (2015) Visible-light photoexcited electron dynamics of scandium endohedral metallofullerenes: the cage symmetry and substituent effects. J Am Chem Soc 137:8769–8774

  53. Wei T, Wang S, Liu F, Tan Y, Zhu X, Xie S et al. (2015) Capturing the long-sought small-bandgap endohedral fullerene Sc3N@C82 with low kinetic stability. J Am Chem Soc 137:3119–3123

  54. Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329:529–531

    Article  CAS  Google Scholar 

  55. Koshio A, Inakuma M, Sugai T, Shinohara H (2000) A preparative scale synthesis of c36 by high-temperature laser-vaporization: purification and identification of C36H6 and C36H6O. J Am Chem Soc 122:398–399

  56. Chen N, Mulet-Gas M, Li Y-Y, Stene RE, Atherton CW, Rodriguez-Fortea A et al. (2013) Sc2S@C2(7892)-C70: a metallic sulfide cluster inside a non-IPR C70 cage. Chem Sci 4:180–186

  57. Feng L, Zhang M, Hao Y, Tang Q, Chen N, Slanina Z et al. (2016) Endohedrally stabilized C70 isomer with fused pentagons characterized by crystallography. Dalton Trans 45:8142–8148

    Article  CAS  Google Scholar 

  58. Yang T, Hao Y, Abella L, Tang Q, Li X, Wan Y et al. (2015) Sc2O@Td(19151)-C76: hindered cluster motion inside a tetrahedral carbon cage probed by crystallographic and computational studies. Chem Eur J 21:11110–11117

  59. Zhao P, Yang T, Guo Y-J, Dang J-S, Zhao X, Nagase S (2014) Dimetallic sulfide endohedral metallofullerene Sc2S@C76: Density functional theory characterization. J Comput Chem 35:1657–1663

  60. Slanina Z, Uhlík F, Feng L, Adamowicz L (2016) Evaluation of the relative stabilities of two non-IPR isomers of Sm@C76. Fuller Nanotub Car N 24:339–344

    Article  CAS  Google Scholar 

  61. Tang C, Deng K, Tan W, Yuan Y, Liu Y, Wu H et al. (2007) Influence of a dichlophenyl group on the geometric structure, electronic properties, and static linear polarizability of La@C74. Phys Rev A 76:013201

    Article  Google Scholar 

  62. Yang Y, Wang F-H, Zhou Y-S, Yuan L, Yang J (2005) Density functional calculations of the polarizability and second-order hyperpolarizability of C50Cl10. Phys Rev A 71:013202

    Article  Google Scholar 

  63. Chen W, Li Z-R, Wu D, Li Y, Sun C-C, Gu FL et al. (2006) Nonlinear optical properties of alkalides Li + (calix[4]pyrrole)M- (M = Li, Na, and K): alkali anion atomic number dependence. J Am Chem Soc 128:1072–1073

  64. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  65. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433

    Article  CAS  Google Scholar 

  66. Zhong R-L, Xu H-L, Li Z-R, Su Z-M (2015) Role of excess electrons in nonlinear optical response. J Phys Chem Lett 6:612–619

  67. Alkorta I, Elguero J (1999) Theoretical study of strong hydrogen bonds between neutral molecules: the case of amine oxides and phosphine oxides as hydrogen bond acceptors. J Phys Chem A 103:272–279

  68. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  69. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  70. Frisch MJ, Trucks GW, Schlegel HB et al. (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford

Download references

Acknowledgment

The authors gratefully acknowledge financial support from the National Science Foundation of China (NSFC) (21003019, and 21473026), the Science and Technology Development Planning of Jilin Province (201201062 and 20140101046JC), and H.-L.X. acknowledges support from the Project funded by the China Postdoctoral Science Foundation (2014 M560227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Liang Xu or Zhong-Min Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, FW., Xu, HL. & Su, ZM. The inner-induced effects of YCN in C76 on the structures and nonlinear optical properties. J Mol Model 22, 174 (2016). https://doi.org/10.1007/s00894-016-3040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3040-y

Keywords

Navigation