Skip to main content
Log in

Theoretical insight into the sensitive mechanism of multilayer-shaped cocrystal explosives: compression and slide

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Multilayer-shaped compression and slide models were employed to investigate the complex sensitive mechanisms of cocrystal explosives in response to external mechanical stimuli. Here, density functional theory (DFT) calculations implementing the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) with the Tkatchenko-Scheffler (TS) dispersion correction were applied to a series of cocrystal explosives: diacetone diperoxide (DADP)/1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB), DADP/1,3,5-tribromo-2,4,6-trinitrobenzene (TBTNB) and DADP/1,3,5-triiodo-2,4,6-trinitrobenzene (TITNB). The results show that the GGA-PBE-TS method is suitable for calculating these cocrystal systems. Compression and slide models illustrate well the sensitive mechanism of layer-shaped cocrystals of DADP/TCTNB and DADP/TITNB, in accordance with the results from electrostatic potentials and free space per molecule in cocrystal lattice analyses. DADP/TCTNB and DADP/TBTNB prefer sliding along a diagonal direction on the ac face and generating strong intermolecular repulsions, compared to DADP/TITNB, which slides parallel to the bc face. The impact sensitivity of DADP/TBTNB is predicted to be the same as that of DADP/TCTNB, and the impact sensitivity of DADP/TBTNB may be slightly more insensitive than that of DADP and much more sensitive than that of TBTNB.

Theoretical insights into the sensitive mechanism of multilayer-shaped cocrystal explosives: compression and slide

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bolton O, Matzger AJ (2011) Improved stability and smart-material functionality realized in an energetic cocrystal. Chem Int Ed 50:8960–8963

    Article  CAS  Google Scholar 

  2. Yang Z-W, Li H-Z, Huang H, Zhou X-Q, Li J-S Nie F-D (2013) Preparation and performance of a HNIW/TNT cocrystal explosive. Propell Explos Pyrot 38:495–501

    Article  CAS  Google Scholar 

  3. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

    Article  CAS  Google Scholar 

  4. Yang Z-W, Wang Y-P, Zhou J-H, Li H-Z, Huang H, Nie F-D (2014) Preparation and performance of a BTF/DNB cocrystal explosive. Propell Explos Pyrot 39:9–13

    Article  CAS  Google Scholar 

  5. Wu J-T, Zhang J-G, Li T, Li Z-M, Zhang T-L (2015) A novel cocrystal explosive NTO/TZTN with good comprehensive properties. RSC Adv 5:28354–28359

    Article  CAS  Google Scholar 

  6. Landenberger KB, Bolton O, Matzger AJ (2013) Two isostructural explosive cocrystals with significantly different thermodynamic stabilities. Angew Chem Int Ed 52:6468–6471

    Article  CAS  Google Scholar 

  7. Landenberger KB, Bolton O, Matzger AJ (2015) Energetic-energetic cocrystals of diacetone diperoxide (DADP): dramatic and divergent sensitivity modifications via cocrystallization. J Am Chem Soc 137:5074–5079

    Article  CAS  Google Scholar 

  8. Zhang H-B, Guo C-Y, Wang X-C, Xu J-J, He X, Liu Y, Liu X-F, Huang H, Sun J (2013) Five energetic cocrystals of BTF by intermolecular hydrogen bond and π-stacking interactions. Cryst Growth Des 13:679–687

    Article  Google Scholar 

  9. Guo C-Y, Zhang H-B, Wang X-C, Liu X-F, Sun J (2013) Study on a novel energetic cocrystal of TNT/TNB. J Mater Sci 48:1351–1357

    Article  CAS  Google Scholar 

  10. Yang Z-W, Li H-Z, Zhou X-Q, Zhang C-Y, Huang H, Li J-S, Nie F-D (2012) Characterization and properties of a novel energetic–energetic cocrystal explosive composed of HNIW and BTF. Cryst Growth Des 12:5155–5158

    Article  CAS  Google Scholar 

  11. Shen J-P, Duan X-H, Luo Q-P, Zhou Y, Bao Q-L, Ma Y-J, Pei C-H (2011) Preparation and characterization of a novel cocrystal explosive. Cryst Growth Des 11:1759–1765

    Article  CAS  Google Scholar 

  12. Massoni J, Saurel R, Baudin G, Demol GA (1999) Mechanistic model for shock initiation of solid explosives. Phys Fluids 11:710–736

    Article  CAS  Google Scholar 

  13. Strom CB, Stine JR, Kramer JF (1990) Sensitivity relationships in energetic materials. In: Bulusu S (ed) Chemistry and physics of energetic materials.) Academic, New York, pp 979–984

  14. Dong H-S, Zhou F-F (1994) High energetic explosives and relatives (in Chinese). Science Press, Beijing

    Google Scholar 

  15. Mathieu D (2012) Theoretical shock sensitivity index for explosives. J Phys Chem A 116:1794–1800

    Article  CAS  Google Scholar 

  16. Ye S-J, Tonokura K, Koshi M (2003) Energy transfer rates and impact sensitivities of crystalline explosives. Combust Flame 132:240–246

    Article  CAS  Google Scholar 

  17. Tan B-S, Long X-P, Peng R-F, Li H-B, Jin B, Chu S-J, Dong H-S (2010) Two important factors influencing shock sensitivity of nitro compounds: bond dissociation energy of X–NO2 (X = C, N, O) and mulliken charges of nitro group. J Hazard Mater 183:908–912

    Article  CAS  Google Scholar 

  18. Li J-S (2010) A multivariate relationship for the impact sensitivities of energetic N-nitrocompounds based on bond dissociation energy. J Hazard Mater 174:728–733

    Article  CAS  Google Scholar 

  19. Politzer P, Murray JS (1995) C–NO2 dissociation energies and surface electrostatic potential maxima in relation to the impact sensitivities of some nitroheterocyclic molecules. Mol Phys 86:251–255

    Article  CAS  Google Scholar 

  20. Politzer P, Murray JS (1996) Relationships between dissociation energies and electrostatic potentials of C–NO2 bonds: applications to impact sensitivities. J Mol Struct 376:419–424

    Article  CAS  Google Scholar 

  21. Murray JS, Lane P, Politzer P (1995) Relationships between impact sensitivities and molecular surface electrostatic potentials of nitroaromatic and nitroheterocyclic molecules. Mol Phys 85:1–8

    Article  CAS  Google Scholar 

  22. Murray JS, Lane P, Politzer P (1998) Effects of strongly electron-attracting components on molecular surface electrostatic potentials: application to predicting impact sensitivities of energetic molecules. Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  23. Owens FJ, Jayasuriya K, Abrahmsen L, Politzer P (1985) Computational analysis of some properties associated with the nitro groups in polynitroaromatic molecules. Chem Phys Lett 116:434–438

    Article  CAS  Google Scholar 

  24. Murray JS, Lane P, Politzer P, Bolduc PR (1990) A relationship between impact sensitivity and the electrostatic potentials at the midpoints of C–NO2 bonds in nitroaromatics. Chem Phys Lett 168:135–139

    Article  CAS  Google Scholar 

  25. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  26. Murray JS, Concha MC, Politzer P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO2/N–NO2 bond dissociation energies. Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  27. Liu Y, Wang L-J, Wang G-X, Du H-C Gong X-D (2012) Theoretical studies on 2-diazo-4,6-dinitrophenol derivatives aimed at finding superior propellants. J Mol Model 18:1561–1572

    Article  CAS  Google Scholar 

  28. Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum, heat of detonation per unit volume. J Mol Model 21:25–35

    Article  Google Scholar 

  29. Politzer P, Murray JS (2015) Impact sensitivity and the maximum heat of detonation. J Mol Model 21:262–272

    Article  Google Scholar 

  30. Zhang C-Y (2007) Investigation of the slide of the single layer of the 1,3,5-triamino-2,4,6-trinitrobenzene crystal: sliding potential and orientation. J Phys Chem B 111:14295–14298

    Article  CAS  Google Scholar 

  31. Zhang C-Y, Wang X-C, Huang H (2008) π-stacked interactions in explosive crystals: buffers against external mechanical stimuli. J Am Chem Soc 130:8359–8365

    Article  CAS  Google Scholar 

  32. Kamlet MJ, Adolph HG (1979) The relationship of impact sensitivity with structure of organic high explosives. II. polynitroaromatic explosives. Propell Explos Pyrot 4:30–34

    Article  CAS  Google Scholar 

  33. Zhang C-Y, Shu Y-J, Huang Y-G Zhao X-D, Dong H-S (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109:8978–8982

    Article  CAS  Google Scholar 

  34. McNesby KL, Coffey CS (1997) Spectroscopic determination of impact sensitivities of explosives. J Phys Chem B 101:3097–3104

    Article  CAS  Google Scholar 

  35. Ma Y, Zhang A-B, Zhang C-H, Jiang D-J, Zhu Y-Q, Zhang C-Y (2014) Crystal packing of low-sensitivity and high-energy explosives. Cryst Growth Des 14:4703–4713

    Article  CAS  Google Scholar 

  36. Zhang C-Y (2006) Investigation on the correlation between the interaction energies of all substituted groups and the molecular stabilities of nitro compounds. J Phys Chem A 110:14029–14035

    Article  CAS  Google Scholar 

  37. Du S, Wang Y, Chen L-Z, Shi W-J, Ren F-D, Li Y-X, Wang J-L, Cao D-L (2012) A B3LYP and MP2(full) theoretical investigation into explosive sensitivity upon the formation of the molecule-cation interaction between the nitro group of 3,4-dinitropyrazole and H+, Li+, Na+, Be2+ or Mg2+. J Mol Model 18:2105–2115

    Article  CAS  Google Scholar 

  38. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16:895–901

    Article  Google Scholar 

  39. Wang Q, Ma H-X, Li J-Z, Wei H-J, Fan X-Z (2012) Theoretical studies on the relationships between molecular structure or thermodecomposition parameters and impact sensitivity of azotetrazolate nonmetallic salts. Acta Chim Sin 70:629–634

    Article  CAS  Google Scholar 

  40. Chen G, Shi W-Y, Xia M-Z, Lei W, Wang F-Y, Gong X-D (2014) Theoretical study of solvent effects on RDX crystal quality and sensitivity using an implicit solvation model. J Mol Model 20:2326–2327

    Article  Google Scholar 

  41. Lin H, Zhu S-G, Li H-Z, Peng X-H (2013) Structure and detonation performance of a novel HMX/LLM-105 cocrystal explosive. J Phys Org Chem 26:898–907

    Article  CAS  Google Scholar 

  42. Wei C-X, Huang H, Duan X-H, Pei C-H (2011) Structure and properties prediction of HMX/TATB cocrystal. Propellants Explos Pyrotech 36:416–423

    Article  CAS  Google Scholar 

  43. Lin H, Zhu S-G, Zhang L, Peng X-H, Li H-Z (2013) Synthesis and first principles investigation of HMX/NMP cocrystal explosive. J Energ Mater 31:261–272

    Article  CAS  Google Scholar 

  44. Li H-R, Shu Y-J, Gao S-J, Chen L, Ma Q, Ju X-H (2013) Easy methods to study the smart energetic TNT/CL-20 co-crystal. J Mol Model 19:4909–4917

    Article  CAS  Google Scholar 

  45. Guo D-Z, An Q, Goddard WA, Zybin SV, Huang FL (2014) Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity. J Phys Chem C 118:30202–30208

    Article  CAS  Google Scholar 

  46. Binns J, Healy MR, Morrison CA (2014) Assessing the performance of density functional theory in optimizing molecular crystal structure parameters. Acta Crystallogr, Sect B: Struct Sci 70:259–267

    Article  CAS  Google Scholar 

  47. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  48. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  49. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  50. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  51. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  52. Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102:073005

    Article  Google Scholar 

  53. Dubnikova F, Kosloff R, Almog J, Zeiri Y, Boese R, Itzhaky H, Alt A, Keinan E (2005) Decomposition of triacetone triperoxide is an entropic explosion. J Am Chem Soc 127:1146–1159

    Article  CAS  Google Scholar 

  54. Gerard F, Hardy A, Becuwe A (1993) Structure of 1,3,5-trichloro-2,4,6-trinitrobenzene. Acta Crystallogr, Sect C: Cryst Struct Commun 49:1215–1218

    Article  Google Scholar 

  55. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  56. Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J Mol Graph Model 38:314–323

    Article  Google Scholar 

  57. Zhang C-Y (2007) Computational investigation on the desensitizing mechanism of graphite in explosives versus mechanical stimuli: compression and glide. J Phys Chem B 111:6208–6213

    Article  CAS  Google Scholar 

  58. Thanthiriwatte KS, Hohenstein EG, Burns LA, Sherrill CD (2011) J Chem Theory Comput 7:88–96

    Article  CAS  Google Scholar 

  59. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DT (2011) Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl Chem 83:1637–1641

    CAS  Google Scholar 

  60. Pospišil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17:2569–2574

    Article  Google Scholar 

  61. Politzer P, Murray JS (2014) Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20(2223):1–8

    Google Scholar 

  62. Armstrong RW, Ammon HL, Elban WL, Tsai DH (2002) Investigation of hot spot characteristics in energetic crystals. Thermochim Acta 384:303–313

    Article  CAS  Google Scholar 

  63. Mark BB (1990) A thermochemical model for shock-induced reactions (heat detonations) in solids. J Chem Phys 92:1839–1848

    Article  Google Scholar 

  64. Dick JJ (1984) Effect of crystal orientation on shock initiation sensitivity of pentaerythritol tetranitrate explosive. Appl Phys Lett 44:859–861

    Article  CAS  Google Scholar 

  65. Yoo CS, Holmes NC, Souers PC, Wu C-J, Ree FH, Dick JJ (2000) Anisotropic shock sensitivity and detonation temperature of pentaerythritol tetranitrate single crystal. J Appl Phys 88:70–75

    Article  CAS  Google Scholar 

  66. Plaskin I, Coffey CS, Mendes R, Ribeiro J, Campos J, Direito J (2006) 13th Symposium (International) on Detonation, ONR 351-07-01. Office of Naval Research, Arlington, VA, p 319

    Google Scholar 

  67. Dang NC, Dreger ZA, Gupta YM, Hooks DE (2010) Time-resolved spectroscopic measurements of shock-wave induced decomposition in cyclotrimethylene trinitramine (RDX) crystals: anisotropic response. J Phys Chem A 114:11560–11566

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the National Key Laboratory of Applied Physics and Chemistry for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-hai Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Hf., Zhang, Sh., Ren, Fd. et al. Theoretical insight into the sensitive mechanism of multilayer-shaped cocrystal explosives: compression and slide. J Mol Model 22, 108 (2016). https://doi.org/10.1007/s00894-016-2973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2973-5

Keywords

Navigation