Skip to main content
Log in

Quantum chemical investigation of the primary thermal pyrolysis reactions of the sodium carboxylate group in a brown coal model

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The primary pyrolysis mechanisms of the sodium carboxylate group in sodium benzoate—used as a model compound of brown coal—were studied by performing quantum chemical computations using B3LYP and the CBS method. Various possible reaction pathways involving reactions such as unimolecular and bimolecular decarboxylation and decarbonylation, crosslinking, and radical attack in the brown coal matrix were explored. Without the participation of reactive radicals, unimolecular decarboxylation to release CO2 was calculated to be the most energetically favorable primary reaction pathway at the B3LYP/6-311+G (d, p) level of theory, and was also found to be more energetically favorable than decarboxylation of an carboxylic acid group. When CBS-QBS results were included, crosslinking between the sodium carboxylate group and the carboxylic acid and the decarboxylation of the sodium carboxylate group (catalyzed by the phenolic hydroxyl group) were found to be possible; this pathway competes with unimolecular decarboxylation of the sodium carboxylate group. Provided that H and CH3 radicals are present in the brown coal matrix and can access the sodium carboxylate group, accelerated pyrolysis of the sodium carboxylate group becomes feasible, leading to the release of an Na atom or an NaCO2 radical at the B3LYP/6-311+G (d, p) or CBS-QB3 level of theory, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3a–c
Fig. 4a–b
Fig. 5
Scheme 2
Scheme 3
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morgan TJ, Kandiyoti R (2014) Chem Rev 114:1547–1607

    Article  CAS  Google Scholar 

  2. Solomon PR, Serio MA, Suuberg EM (1992) Prog Energy Combust Sci 18:133–220

    Article  CAS  Google Scholar 

  3. Schafer HNS (1970) Fuel 49:197–213

    Article  CAS  Google Scholar 

  4. Quyn DM, Wu H, Bhattacharya SP, Li C-Z (2002) Fuel 81:151–158

    Article  CAS  Google Scholar 

  5. Takematsu T, Maude C (1991) Coal gasification for IGCC power generation. Gemini House, London

    Google Scholar 

  6. Eskay TP, Britt PF, Buchanan AC (1996) Energy Fuel 10:1257–1261

    Article  CAS  Google Scholar 

  7. Wornat MJ, Sakurovs R (1996) Fuel 75:867–871

    Article  CAS  Google Scholar 

  8. Murray JB (1973) Fuel 52:105–111

    Article  CAS  Google Scholar 

  9. Schafer HNS (1979) Fuel 58:667–672

    Article  CAS  Google Scholar 

  10. Li CZ, Sathe C, Kershaw JR, Pang Y (2000) Fuel 79:427–438

    Article  CAS  Google Scholar 

  11. Quyn DM, Wu H, Hayashi J-i, Li C-Z (2003) Fuel 82:587–593

    Article  CAS  Google Scholar 

  12. van Eyk PJ, Ashman PJ, Nathan GJ (2011) Combust Flame 158:2512–2523

    Article  Google Scholar 

  13. Sathe C, Pang Y, Li C-Z (1999) Energy Fuel 13:748–755

    Article  CAS  Google Scholar 

  14. Wu H, Quyn DM, Li C-Z (2002) Fuel 81:1033–1039

    Article  CAS  Google Scholar 

  15. Li CZ (2007) Fuel 86:1664–1683

    Article  CAS  Google Scholar 

  16. Domazetis G, Raoarun M, James BD (2006) Energy Fuel 20:1997–2007

    Article  CAS  Google Scholar 

  17. Yan G, Zhang Z, Yan K (2013) Mol Phys 111:147–156

    Article  CAS  Google Scholar 

  18. Mathews JP, van Duin ACT, Chaffee AL (2011) Fuel Process Technol 92:718–728

    Article  CAS  Google Scholar 

  19. Liu S, Zhang Z, Wang H (2012) J Mol Model 18:359–365

    Article  CAS  Google Scholar 

  20. Hatcher PG, Breger IA, Szeverenyi N, Maciel GE (1982) Org Geochem 4:9–18

    Article  CAS  Google Scholar 

  21. Kim K, Jordan KD (1994) J Phys Chem 98:10089–10094

    Article  CAS  Google Scholar 

  22. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  23. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  24. Peng C, Schlegel HB (1993) Israel J Chem 33:449–454

    Article  CAS  Google Scholar 

  25. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  26. Petersson GA, Bennett A, Tensfeldt TG, Al‐Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193–2218

    Article  CAS  Google Scholar 

  27. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822–2827

    Article  CAS  Google Scholar 

  28. Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision A.1. Gaussian Inc., Pittsburgh

  29. Ibarra J, Moliner R, Gavilan MP (1991) Fuel 70:408–413

    Article  CAS  Google Scholar 

  30. Joseph JT, Forrai TR (1992) Fuel 71:75–80

    Article  CAS  Google Scholar 

  31. Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255–263

    Article  CAS  Google Scholar 

  32. Ervin KM, DeTuri VF (2002) J Phys Chem A 106:9947–9956

    Article  CAS  Google Scholar 

  33. Czechowski F, Jezierski A (1997) Energy Fuel 11:951–964

    Article  CAS  Google Scholar 

  34. Smith GV, Wiltowski T, Phillips JB (1989) Energy Fuel 3:536–537

    Article  CAS  Google Scholar 

  35. He YZ, Mallard WG, Tsang W (1988) J Phys Chem 92:2196–2201

    Article  CAS  Google Scholar 

  36. Zhang S, Hayashi J-i, Li C-Z (2011) Fuel 90:1655–1661

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (no. 51404162) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(RAR 612 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, B., Zhang, Z. et al. Quantum chemical investigation of the primary thermal pyrolysis reactions of the sodium carboxylate group in a brown coal model. J Mol Model 20, 2523 (2014). https://doi.org/10.1007/s00894-014-2523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2523-y

Keywords

Navigation