Skip to main content
Log in

Theoretical study of the adsorption of pentachlorophenol on the pristine and Fe-doped boron nitride nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

To explore the novel application of boron nitride nanotubes (BNNTs), we investigated the interaction of pentachlorophenol (PCP) pollutant with the pristine and Fe doped (Fe-doped) (8, 0) single-walled BNNTs by performing density functional theory calculations. Compared with the weak physisorption on the pristine BNNT, PCP molecule presents strong chemisorption on the Fe-doped BNNT. The calculated data for the electronic properties indicate that doping Fe atom into the BNNT significantly improves the electronic transport property of BNNT, induces magnetism in the BNNT, and increases its adsorption sensitivity toward PCP molecule. It is suggested that doping BNNTs with Fe is an available strategy for improving the properties of BNNTs, and that Fe-doped BNNT would be a potential resource for adsorbing PCP pollutant in environments.

The Fe-doped BNNT presents high sensitivity to PCP pollutant and is expected to be a potential resource for adsorbing toxic pentachlorophenol molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Appl Phys Lett 80:2767–2769

    Article  CAS  Google Scholar 

  3. Li J, Lu YJ, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929–933

    Article  CAS  Google Scholar 

  4. Bekyarova E, Davis M, Burch T, Itkis ME, Zhao B, Sunshine S, Haddon RC (2004) J Phys Chem B 108:19717–19720

    Article  CAS  Google Scholar 

  5. Kauffman DR, Sorescu DC, Schofield DP, Allen BL, Jordan KD, Star A (2010) Nano Lett 10:958–963

    Article  CAS  Google Scholar 

  6. Girao EC, Fagan SB, Zanella I, Filho AGS (2010) J Hazard Mater 184:678–683

    Article  CAS  Google Scholar 

  7. Chen GC, Shan XQ, Pei ZG, Wang HH, Zheng LR, Zhang J, Xie YN (2011) J Hazard Mater 188:156–163

    Article  CAS  Google Scholar 

  8. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269:966–967

    Article  CAS  Google Scholar 

  9. Wang JS, Kayastha VK, Yap YK, Fan ZY, Lu JG, Pan ZW, Ivanov IN, Puretzky AA, Geohegan DB (2005) Nano Lett 5:2528–2532

    Article  CAS  Google Scholar 

  10. Rubio A, Corkill JL, Cohen ML (1994) Phys Rev B 49:5081–5084

    Article  CAS  Google Scholar 

  11. Ma RZ, Bando Y, Zhu HW, Sato T, Xu C, Wu DH (2002) J Am Chem Soc 124:7672–7673

    Article  CAS  Google Scholar 

  12. Tang CC, Bando Y, Ding XX, Qi SR, Golberg D (2002) J Am Chem Soc 124:14550–14551

    Article  CAS  Google Scholar 

  13. Zhao JX, Ding YH (2009) J Chem Phys 131:014706

    Article  Google Scholar 

  14. Choi H, Park YC, Kim YH, Lee YS (2011) J Am Chem Soc 133:2084–2087

    Article  CAS  Google Scholar 

  15. Chen RZ, Zhi CY, Yang H, Bando Y, Zhang ZY, Sugiur N, Golberg D (2011) J Colloid Interface Sci 359:261–268

    Article  CAS  Google Scholar 

  16. Zhao JX, Ding YH (2010) Diam Relat Mater 19:1073–1077

    Article  CAS  Google Scholar 

  17. Ciofani G, Genchi GG, Liakos I, Athanassiou A, Dinucci D, Chiellini F, Mattoli V (2012) J Colloid Interface Sci 374:308–314

    Article  CAS  Google Scholar 

  18. Fan Y, Wang YS, Lou JS, Xu SF, Zhang LG, An LN (2006) J Am Ceram Soc 89:740–742

    Article  CAS  Google Scholar 

  19. Wang Q, Liu YJ, Zhao JX (2013) J Mol Model 19:1143–1151

    Article  CAS  Google Scholar 

  20. Beheshtian J, Peyghan AA, Tabar MB, Bagheri Z (2013) Appl Surf Sci 266:182–187

    Article  CAS  Google Scholar 

  21. Tang CC, Bando Y, Huang Y, Yue SL, Gu CZ, Xu FF, Golberg D (2005) J Am Chem Soc 127:6552–6553

    Article  CAS  Google Scholar 

  22. Xie Y, Zhang JM (2011) Comput Theor Chem 976:215–220

    Article  CAS  Google Scholar 

  23. Li XM, Tian WQ, Dong Q, Huang XR, Sun CC, Jiang L (2011) Comput Theor Chem 964:199–206

    Article  CAS  Google Scholar 

  24. Wu XJ, Yang JL, Hou JG, Zhu QS (2006) J Chem Phys 124:54706

    Article  Google Scholar 

  25. Wu XJ, Yang JL, Zeng XC (2006) J Chem Phys 125:044704

    Article  Google Scholar 

  26. Zhao JX, Ding YH (2008) J Phys Chem C 112:5778–5783

    Article  CAS  Google Scholar 

  27. Tontapha S, Ruangpornvisuti V, Wanno B (2013) J Mol Model 19:239–245

    Article  CAS  Google Scholar 

  28. Zhang J, Loh KP, Zheng JW, Michael BS, Wu P (2007) Phys Rev B 75:245301

    Article  Google Scholar 

  29. Wang RX, Zhu RX, Zhang DJ (2008) Chem Phys Lett 467:131–135

    Article  CAS  Google Scholar 

  30. Peyghan AA, Soltani A, Pahlevani AA, Kanani Y, Khajeh S (2013) Appl Surf Sci 270:25–32

    Article  CAS  Google Scholar 

  31. Patel RB, Liu JW, Eng J, Lqbal Z (2011) J Mater Res 26:1332–1339

    Article  CAS  Google Scholar 

  32. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756

    Google Scholar 

  33. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  34. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper is jointly supported by the National Natural Science Foundation of China (Grant No. 21273131), a Project of Shandong Province Higher Educational Science and Technology Program, China (Grant No. J11LB08), and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2013BM019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-ju Zhang.

Electronic supplementary material

The calculated total electronic charge densities for the pristine and Fe-doped BNNTs with PCP adsorption systems are shown in Fig. 1s. This information is available free of charge via the Internet at http://www.springer.com.

ESM 1

(DOC 129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Rx., Zhang, Dj., Zhu, Rx. et al. Theoretical study of the adsorption of pentachlorophenol on the pristine and Fe-doped boron nitride nanotubes. J Mol Model 20, 2093 (2014). https://doi.org/10.1007/s00894-014-2093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2093-z

Keywords

Navigation