Skip to main content
Log in

A periodic density functional theory study of tetrazole adsorption on anatase surfaces: potential application of tetrazole rings in dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A density functional theory (DFT) method (periodic DMol3) with full geometry optimization was used to study the adsorption of tautomeric forms of tetrazole on anatase TiO2 (101), (100), and (001) surfaces. It was found that the adsorption of tetrazole on the TiO2 surfaces does not proceed via a dissociative process, and negative shifts in the Fermi level of TiO2 were noted upon N-containing heterocycle adsorption. The configuration of the tetrazole during adsorption and the corresponding adsorption energies on different surfaces and sites were estimated. In addition, it was found that tetrazole may be adsorbed on TiO2 surfaces through an interaction between a cation on the surface and a lone pair on the N1 or N2 atom of the tetrazole molecule. The results indicate that the adsorption of tetrazole through the N2 position (leading to the 1H tautomer) on an anatase TiO2 surface is favored over adsorption through the N1 position. In addition, it was observed that the photocatalytic activity of tetrazole-doped TiO2 is higher than that of a pure anatase TiO2 surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Diebold U (2003) Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  2. Ranade MR, Navrotski A, Zhang HZ, Banfield JF, Elder SH, Zaban A, Borse PH, Kulkarni SK, Doran GS, Whitfield HJ (2002) Proc Natl Acad Sci USA 99:6476–6481

    Google Scholar 

  3. Hagfelt A, Grätzel M (1995) Chem Rev 95:49–68

    Article  Google Scholar 

  4. Hadjivanov KI, Klissurski DG (1996) Chem Soc Rev 25:61–69

    Article  Google Scholar 

  5. Shklover V, Nazeeruddin MK, Zakeeruddin SM, Barbe C, Kay A, Haibach T, Steurer W, Hermann R, Nissen HU, Gratzel M (1997) Chem Mater 9:430–439

    Article  Google Scholar 

  6. Vittadini A, Selloni A, Rotzinger FP, Gratzel M (1998) Phys Rev Lett 81:2954–2957

    Article  CAS  Google Scholar 

  7. Fillinger A, Soltz D, Parkinson BA (2002) J Electrochem Soc 149:146–1156

    Article  Google Scholar 

  8. Gong XQ, Selloni A, Vittadini A (2006) J Phys Chem B 110:2804–2811

    Article  CAS  Google Scholar 

  9. Lazzeri M, Vittadini A, Selloni A (2001) Phys Rev B 63:155409–155417

    Article  Google Scholar 

  10. Ushiroda S, Ruzycki N, Lu Y, Spitler MT, Parkinson BA (2005) J Am Chem Soc 127:5158–5168

    Article  CAS  Google Scholar 

  11. Wang H, Wu Y, Xu BQ (2005) Appl Catal B Environ 59:139–146

    Article  CAS  Google Scholar 

  12. Breysse M, Portefaix JL, Vrinat M (1991) Catal Today 10:489–505

    Article  CAS  Google Scholar 

  13. Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K (2000) J Mol Catal A 161:205–212

    Article  CAS  Google Scholar 

  14. Irie H, Watanabe Y, Hashimoto K (2003) J Phys Chem B 107:5483–5486

    Article  CAS  Google Scholar 

  15. Borgarello E, Kiwi J, Gratzel M, Pelizzetti E, Visca M (1982) J Am Chem Soc 104:2996–3002

    Article  CAS  Google Scholar 

  16. Yamashita H, Ichihashi Y, Takeuchi M, Kishiguchi S, Anpo M (1999) J Synchrotron Radiat 6:455–457

    Article  Google Scholar 

  17. Gratzel M (1991) Comments Inorg Chem 12:93–111

    Article  Google Scholar 

  18. Pechy P, Rotzinger F, Nazeeruddin MK, Kohle O, Zakeeruddin SM, Humphry-Baker R, Gratzel M (1995) Chem Commun 65–66

  19. Boschloo G, Fitzmaurice D (1999) J Phys Chem 103:2228–2231

    CAS  Google Scholar 

  20. Gratzel M (2004) J Photochem Photobiol A Chem 164:3–14

    Article  CAS  Google Scholar 

  21. Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M (1997) J Am Ceram Soc 80:3157–3171

    Article  CAS  Google Scholar 

  22. Nakada S, Matsuda M, Kambe S, Saito Y, Kitamura T, Sakata T, Wada Y, Mori H, Yanagida S (2002) J Phys Chem B 106:10004–10010

    Article  Google Scholar 

  23. Kim H, Auyeung RCY, Ollinger M, Kushto GP, Kafafi ZH, Pique A (2006) Appl Phys A 83:73–76

    Article  CAS  Google Scholar 

  24. Lavrencic Stangar U, Orel B, Neumann B (2003) J Sol–Gel Sci Technol 26:1113–1118

    Google Scholar 

  25. Onal I, Soyer S, Senkan S (2006) Surf Sci 600:2457–2469

    Article  CAS  Google Scholar 

  26. Mguig B, Calatayud M, Minot C (2004) J Mol Struct 709:73–78

    Article  CAS  Google Scholar 

  27. Wahab HS, Bredow T, Aliwi SM (2008) J Mol Struct 868:101–108

    Article  CAS  Google Scholar 

  28. Wahab HS, Bredow T, Aliwi SM (2008) Chem Phys 354:50–57

    Article  CAS  Google Scholar 

  29. Wanbayor R, Deák P, Frauenheim T, Ruangpornvisuti V (2012) Comput Mater Sci 58:24–30

    Article  CAS  Google Scholar 

  30. Barreto WJ, Ando RA, Estevão BM, da Silva Zanoni KP (2012) Spectrochim Acta Pt A 92:16–20

  31. Guo J, Watanabe S, Janik MJ, Ma X, Song C (2010) Catal Today 149:218–223

    Article  CAS  Google Scholar 

  32. Nilsing M, Lunell S, Persson P, Ojamae L (2005) Surf Sci 582:49–60

    Article  CAS  Google Scholar 

  33. Liu H, Zhao M, Lei Y, Pan C, Xiao W (2012) Comput Mater Sci 51:389–395

    Article  CAS  Google Scholar 

  34. Ostrovskii V, Koldobskii G, Katritzky AR, Ramsden CA, Scriven EF, Taylor RJ (eds)(2008) Comprehensive heterocyclic chemistry III. Elsevier, Oxford, pp 257–423

  35. Hashimoto Y, Ohashi R, Kurosawa Y, Minami K, Kaji H, Hayashida K, Narita H, Murata S (1998) J Cardiovasc Pharmacol 31:568–575

    Article  CAS  Google Scholar 

  36. DeSarro A, Ammendola D, Zappala M, Grasso S, DeSarro G (1995) Antimicrob Agents Chemother 39:232–237

    Article  CAS  Google Scholar 

  37. Herr RJ (2002) Bioorg Med Chem 10:3379–3393

    Article  CAS  Google Scholar 

  38. Myznikov L, Hrabalek A, Koldobskii G (2007) Chem Heterocycl Compd 43:1–9

    Article  CAS  Google Scholar 

  39. Ek F, Wistrand LG, Frejd T (2003) Tetrahedron 59:6759–6769

    Article  CAS  Google Scholar 

  40. Flippin LA (1991) Tetrahedron Lett 32:6857–6860

    Article  CAS  Google Scholar 

  41. Rhonnstad P, Wensbo D (2002) Tetrahedron Lett 43:3137–3139

    Article  CAS  Google Scholar 

  42. Jursic BS, Le Blanc BW (1998) J Heterocycl Chem 35:405–408

    Article  CAS  Google Scholar 

  43. John EO, Kirchmeier RL, Shreeve JM (1989) Inorg Chem 28:4629–4633

    Article  CAS  Google Scholar 

  44. Zhao-Xu C, Heming X (2000) Int J Quantum Chem 79:350–357

    Article  Google Scholar 

  45. Modarresi-Alam AR, Khamooshi F, Rostamizadeh M, Keykha H, Nasrollahzadeh M, Bijanzadeh HR, Kleinpeter E (2007) J Mol Struct 841:61–66

    Google Scholar 

  46. Dabbagh HA, Chermahini AN (2012) J Iran Chem Soc 9:339–348

    Article  CAS  Google Scholar 

  47. Chermahini AN, Nasr-Esfahani M, Dalirnasab Z, Dabbagh HA, Teimouri A (2007) J Mol Struct THEOCHEM 820:7–11

    Article  Google Scholar 

  48. Chermahini AN, Dabbagh HA, Teimouri A (2007) J Mol Struct THEOCHEM 822:33–37

    Article  Google Scholar 

  49. Chermahini AN, Teimouri A, Moaddeli A (2011) Heteroatom Chem 22:168

    Article  CAS  Google Scholar 

  50. Chermahini AN, Teimouri A, Salimi Beni A (2011) Struct Chem 22:175–181

    Article  CAS  Google Scholar 

  51. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  52. Delley B (1996) J Phys Chem 100:6107–6110

    Article  CAS  Google Scholar 

  53. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  54. Kim E, Weck PF, Berber S, Tomanek D (2008) Phys Rev B 78:113404–113408

    Article  Google Scholar 

  55. Benedek NA, Snook IK, Latham K, Yarovsky I (2005) J Chem Phys 122:144102–144109

    Article  CAS  Google Scholar 

  56. Inada Y, Orita HJ (2008) Comput Chem 29:225–232

    Article  CAS  Google Scholar 

  57. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  58. Cromer DT, Herrington K (1955) J Am Chem Soc 77:4708

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with financial support from Yasouj University and Isfahan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Najafi Chermahini or Alireza Salimi Beni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chermahini, A.N., Hosseinzadeh, B., Beni, A.S. et al. A periodic density functional theory study of tetrazole adsorption on anatase surfaces: potential application of tetrazole rings in dye-sensitized solar cells. J Mol Model 20, 2086 (2014). https://doi.org/10.1007/s00894-014-2086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2086-y

Keywords

Navigation