Skip to main content
Log in

Density functional theory studies of the adsorption of hydrogen sulfide on aluminum doped silicane

  • Review
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

First principles total energy calculations have been performed to study the hydrogen sulfide (H2S) adsorption on silicane, an unusual one monolayer of Si(111) surface hydrogenated on both sides. The H2S adsorption may take place in dissociative or non-dissociative forms. Silicane has been considered as: (A) non-doped with a hydrogen vacancy, and doped in two main configurations; (B) with an aluminum replacing a hydrogen atom and (C-n; n = 1, 2, 3) with an aluminum replacing a silicon atom at a lattice site. In addition, three supercells; 4x4, 3x3 and 2x2 have been explored for both non-doped and doped silicane. The non-dissociative adsorption takes place in geometries (A), (C-1), (C-2) and (C-3) while the dissociative in (B). Adsorption energies of the dissociative case are larger than those corresponding to the non-dissociated cases. In the dissociative adsorption, the molecule is fragmented in a HS structure and a H atom which are bonded to the aluminum to form a H-S-Al-H structure. The presence of the doping produces some electronic changes as the periodicity varies. Calculations of the total density of states (DOS) indicate that in most cases the energy gap decreases as the periodicity changes from 4x4 to 2x2. The features of the total DOS are explained in terms of the partial DOS. The reported charge density plots explain quite well the chemisorptions and physisorptions of the molecule on silicane in agreement with adsorption energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Çakmak M, Srivastava GP (1998) Ab initio study of atomic geometry, electronic states, and bonding for H2S adsorption on III-V semiconductor (110)-(1 × 1) surfaces. Phys Rev B 57:4486–4492. doi:10.1103/PhysRevB.57.4486

    Article  Google Scholar 

  2. Çakmak M, Srivastava GP (1999) Adsorption of partially and fully dissociated H2S molecules on the Si(001) and Ge(001) surfaces. Phys Rev B 60:5497–5505. doi:10.1103/PhysRevB.60.5497

    Article  Google Scholar 

  3. Russell SM, Liu D-J, Kawai M, Kim Y, Thiel PA (2010) Low-temperature adsorption of H2S on Ag(111). J Chem Phys 133:124705–124713. doi:10.1063/1.3481481

    Article  Google Scholar 

  4. Jayaraman V, Mangamma G, Gnanasekaran T, Periaswami G (1996) Evaluation of BaSnO3 and Ba(Zr,Sn)O3 solid solutions as semiconductor sensor materials. Solid State Ionics 86–88:1111–1114. doi:10.1016/0167-2738(96)00277-9

    Article  Google Scholar 

  5. Akimov BA et al. (1997) The electrical conductivity of polycrystalline SnO2(Cu) films and their sensitivity to hydrogen sulfide. Semiconductors 31:335–339. doi:10.1134/1.1187182

    Article  Google Scholar 

  6. Schutt HU, Rhodes PR (1996) Corrosion in an aqueous hydrogen sulfide, ammonia, and oxygen system. Corrosion 52(12):947–952. doi:10.5006/1.3292088

    Article  CAS  Google Scholar 

  7. Conrad S, Mullins DR, Xin QS, Zhu XY (1996) Thermal and photochemical deposition of sulfur on GaAs(100). Appl Surf Sci 107:145–152. doi:10.1016/S0169-4332(96)00499-0

    Article  CAS  Google Scholar 

  8. Jiang DE, Carter EA (2005) First principles study of H2S adsorption and dissociation on Fe(110). Surf Sci 583:60–68. doi:10.1016/j.susc.2005.03.023

    Article  CAS  Google Scholar 

  9. Ren C, Wang X, Miao Y, Yi L, Jin X, Tan Y (2010) DFT study of the dissociative adsorption of H2S molecule on the Si(1 1 1)-7 × 7 surface. J Mol Struct (THEOCHEM) 949:96–100. doi:10.1016/j.theochem.2010.03.014

    Article  CAS  Google Scholar 

  10. Fujiwara K (1981) Electron orbital energies of H2S and H2O chemisorbed on the Si(111) 7 × 7 surface. J Chem Phys 75:5172–5179. doi:10.1063/1.441867

    Article  CAS  Google Scholar 

  11. Rezaei MA, Stipe BC, Ho W (1998) Atomically resolved determination of the adsorption sites as a function of temperature and coverage: H2S on Si(111)-(7 × 7). J Phys Chem B 102(52):10941–10947. doi:10.1021/jp983207b

    Article  CAS  Google Scholar 

  12. Rezaei MA, Stipe BC, Ho W (1998) Inducing and imaging single molecule dissociation on a semiconductor surface: H2S and D2S on Si(111)-7 × 7. J Chem Phys 109:6075–6078. doi:10.1063/1.477233

    Article  CAS  Google Scholar 

  13. Chakarov DV, Ho W (1995) Thermal and photo-induced desorption, dissociation, reactions of H2S adsorbed on Si(111) 7 × 7. Surf Sci 323:57–70. doi:10.1016/0039-6028(94)00661-X

    Article  CAS  Google Scholar 

  14. Novoselov KS et al. (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453. doi:10.1073/pnas.0502848102

    Article  CAS  Google Scholar 

  15. Novoselov KS et al. (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. doi:10.1038/nature04233

    Article  CAS  Google Scholar 

  16. Lebégue S, Eriksson O (2009) Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B 79:115409–115413. doi:10.1103/PhysRevB.79.115409

    Article  Google Scholar 

  17. Hussain T et al. (2011) Ab initio study of lithium-doped graphane for hydrogen storage. EPL 96:27013–27017. doi:10.1209/0295-5075/96/27013

    Article  Google Scholar 

  18. Hussain T, Pathak B, Ramzan M, Maark TA, Ahuja R (2012) Calcium doped graphane as a hydrogen storage material. Appl Phys Lett 100:183902–183907. doi:10.1063/1.4710526

    Article  Google Scholar 

  19. Houssa M, Pourtois G, Afanas’ev VV, Stesmans A (2010) Can silicon behave like graphene? A first-principles study. Appl Phys Lett 97:112106–112109. doi:10.1063/1.3489937

    Article  Google Scholar 

  20. Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas’ev VV, Stesmans A (2011) Electronic properties of hydrogenated silicene and germanene. Appl Phys Lett 98:223107–223110. doi:10.1063/1.3595682

    Article  Google Scholar 

  21. Lew Yan Voon LC, Sandberg E, Aga RS, Farajian AA (2010) Hydrogen compounds of group-IV nanosheets. Appl Phys Lett 97:163114–163117. doi:10.1063/1.3495786

    Article  Google Scholar 

  22. Şahin H, Cahangirov S et al. (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys Rev B 80:155453–155465. doi:10.1103/PhysRevB.80.155453

    Article  Google Scholar 

  23. Cahangirov S, Topsakal M, Aktürk E, Şahin H, Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804–236808. doi:10.1103/PhysRevLett.102.236804

    Article  CAS  Google Scholar 

  24. Wang S (2010) Studies of physical and chemical properties of two-dimensional hexagonal crystals by first-principles calculation. J Phys Soc Jpn 79:064602–064607. doi:10.1143/JPSJ.79.064602

    Article  Google Scholar 

  25. Kara A et al. (2009) Physics of silicene stripes. J Supercond Nov Magn 22:259–263. doi:10.1007/s10948-008-0427-8

    Article  CAS  Google Scholar 

  26. Aufray B et al. (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl Phys Lett 96:183102–183105. doi:10.1063/1.3419932

    Article  Google Scholar 

  27. Padova DE, Quaresima C et al. (2011) sp2-like hybridization of silicon valence orbitals in silicene nanoribbons. Appl Phys Lett 98:081909–081912. doi:10.1063/1.3557073

    Article  Google Scholar 

  28. Guzmán-Verri GG, Lew Yan Voon LC (2011) Band structure of hydrogenated Si nanosheets and nanotubes. J Phys Condens Matter 23:145502–145507. doi:10.1088/0953-8984/23/14/145502

    Article  Google Scholar 

  29. Cheng YC, Zhu ZY, Schwingenschlögl U (2011) Doped silicene: evidence of a wide stability range. EPL 95:17005–17010. doi:10.1209/0295-5075/95/17005

    Article  Google Scholar 

  30. Takeda K, Shiraishi K (1989) Electronic structure of Si-skeleton materials. Phys Rev B 39:11028–11037. doi:10.1103/PhysRevB.39.11028

    Article  CAS  Google Scholar 

  31. Van de Walle CG, Northrup JE (1993) First-principles investigation of visible light emission from silicon-based materials. Phys Rev Lett 70:1116–1119. doi:10.1103/PhysRevLett.70.1116

    Article  Google Scholar 

  32. Nakano H et al. (2006) Soft synthesis of single-crystal silicon monolayer sheets†. Angew Chem 118(38):6451–6454. doi:10.1002/ange.200600321

    Article  Google Scholar 

  33. Dahn JR, Way BM, Fuller E (1993) Structure of siloxene and layered polysilane (Si6H6). Phys Rev B 48:17872–17877. doi:10.1103/PhysRevB.48.17872

    Article  CAS  Google Scholar 

  34. Soler JM, Artacho E, Gale JD (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779. doi:10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  35. Ordejon P, Artacho E, Soler JM (1996) Self-consistent order-N density-functional calculations for very large systems. Phys Rev B 53:10441–10444. doi:10.1103/PhysRevB.53.R10441

    Article  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  37. Hamann DR, Schlüter M, Chiang C (1979) Norm-conserving pseudopotentials. Phys Rev Lett 43:1494–1497. doi:10.1103/PhysRevLett.43.1494

    Article  CAS  Google Scholar 

  38. Bachelet GB, Hamann DR, Schlüter M (1982) Pseudopotentials that work: from H to Pu. Phys Rev B 26:4199–4228. doi:10.1103/PhysRevB.26.4199

    Article  CAS  Google Scholar 

  39. Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425–1428. doi:10.1103/PhysRevLett.48.1425

    Article  CAS  Google Scholar 

  40. Junquera J, Paz Ó, Sánchez-Portal D, Artacho E (2001) Numerical atomic orbitals for linear-scaling calculations. Phys Rev B 64:235111–235120. doi:10.1103/PhysRevB.64.235111

    Article  Google Scholar 

  41. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. doi:10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  42. Edwards TH, Moncur NK, Snyder LE (1967) Ground–state molecular constants of hydrogen sulfide. J Chem Phys 46:2139–2142. doi:10.1063/1.1841014

    Article  CAS  Google Scholar 

  43. Lai Y-H, Yeh C-T, Lin Y-H, Hung W-H (2002) Adsorption and thermal decomposition of H2S on Si(100). Surf Sci 519:150–156. doi:10.1016/S0039-6028(02)02208-2

    Article  CAS  Google Scholar 

  44. Dominic RA (2008) First-principles studies of H2S adsorption and dissociation on metal surfaces. Surf Sci 602:2758–2768. doi:10.1016/j.susc.2008.07.001

    Article  Google Scholar 

  45. Jiang DE, Carter EA (2004) Adsorption, diffusion, and dissociation of H2S on Fe(100) from first principles. J Phys Chem B 108:19140–19145. doi:10.1021/jp046475k

    Article  CAS  Google Scholar 

  46. Leenaerts O, Partoens B, Peeters FM (2009) Water on graphene: hydrophobicity and dipole moment using density functional theory. Phys Rev B 79:235440. doi:10.1103/PhysRevB.79.235440

    Article  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the partial financial support of projects: Cuerpo Académico Física Computacional de la Materia Condensada (BUAP-CA-194) and VIEP-BUAP-EXC11-G. We are also grateful to the technical assistance of L. Rojas and N. Mendes at the computer center, in the Instituto de Física “Luis Rivera Terrazas” of the Universidad Autónoma de Puebla (IFUAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Sánchez-Ochoa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Ochoa, F., Guerrero-Sánchez, J., Canto, G.I. et al. Density functional theory studies of the adsorption of hydrogen sulfide on aluminum doped silicane. J Mol Model 19, 2925–2934 (2013). https://doi.org/10.1007/s00894-013-1873-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1873-1

Keywords

Navigation