Skip to main content
Log in

Assessment of the photosensitization properties of cationic porphyrins in interaction with DNA nucleotide pairs

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present a theoretical assessment of the photosensitization properties of meso-mono(N-methylpyridyl) triphenylporphyrin (1, MmPyP+), which interacts with DNA nucleotide pairs [adenine (A)-thymine (T); guanine (G)-cytosine (C)] via an external binding mode. The photosensitization properties of the arrangements 1A, 1T, 1G and 1C were investigated. A set of density functionals (B3LYP, PBE0, CAM-B3LYP, M06-2X, B97D) with the 6-31G(d) basis set was used to calculate the electronic absorption spectra in solution (water) following TD-DFT methodology. In all the arrangements, with the exception of 1C, the functional PBE0 produced the lowest deviation of the Soret band (0.1–0.2 eV). Using this functional, we show that the porphyrin–nucleotide interaction is stabilized, as reflected by a larger HOMO–LUMO gap than free porphyrin. A more important effect of the interaction corresponds to the red-shift of the Soret band of MmPyP+, which is in agreement with experimental results. This behavior could be explained by the higher symmetry found in arrangements with a lower dipole moment, and by the more symmetrical distribution of electronic density along the molecular orbitals, which provokes electronic transitions of lower energy. The structural model allowed us to show that MmPyP+ improves the characteristics as a photosensitizer when it interacts with nucleotide pairs due to the longer wavelength required for the Soret band. Results obtained for porphyrins with larger monocationic substituents (2, MmAP+; 3, MONPP+) do not lead to the same behavior. Although the structural model is insufficient to describe porphyrin photosensitization, it suggests that improvements in this property are produced by the inclusion of a cationic charge in the pyridyl ring and a smaller size of the substituent leading to a better communication in the porphyrin–nucleotide pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a c
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burger RM (1998) Chem Rev 98:1153–1170

    Article  CAS  Google Scholar 

  2. Tjahjono DH, Akutsu T, Yoshioka N, Inoue H (1999) Biochim Biophys Acta 1472:333–343

    Article  CAS  Google Scholar 

  3. Munson BR, Fiel RJ (1992) Nucleic Acids Res 20:1315–1319

    Article  CAS  Google Scholar 

  4. Garcia G, Sarrazy V, Sol V, Morvan CL, Granet R, Alves S, Krausz P (2009) Bioorg Med Chem 17:767–776

    Article  CAS  Google Scholar 

  5. Martino L, Pagano B, Fotticchia I, Neidle S, Giancola C (2009) J Phys Chem B 113:14779–14786

    Article  CAS  Google Scholar 

  6. Shi D-F, Wheelhouse RT, Sun D, Hurley LH (2001) J Med Chem 44:4509–4523

    Article  CAS  Google Scholar 

  7. Mező G, Herényi L, Habdas J, Majer Z, Myśliwa-Kurdziel B, Tóth K, Csík G (2011) Biophys Chem 155:36–44

    Article  Google Scholar 

  8. Nyman ES, Hynninen PH (2004) J Photochem Photobiol B Biol 73:1–28

    Article  CAS  Google Scholar 

  9. Kasturi C, Platz MS (1992) Photochem Photobiol 56:427–429

    Article  CAS  Google Scholar 

  10. Wainwright M (2003) Int J Antimicrob Agents 21:510–520

    Article  CAS  Google Scholar 

  11. Zupán K, Herényi L, Tóth K, Majer Z, Csík G (2004) Biochemistry 43:9151–9159

    Article  Google Scholar 

  12. Dixon DW, Schinazi R, Marzilli LG (1990) Ann N Y Acad Sci 616:511–513

    Article  Google Scholar 

  13. Carvlin MJ, Fiel RJ (1983) Nucleic Acids Res 11:6121–6139

    Article  CAS  Google Scholar 

  14. Fiel RJ, Howard JC, Mark EH, Gupta ND (1979) Nucleic Acids Res 6:3093–3118

    Article  CAS  Google Scholar 

  15. Kelly JM, Murphy MJ, McConnell DJ, OhUigin C (1985) Nucleic Acids Res 13:167–184

    Article  CAS  Google Scholar 

  16. McMillin DR, Shelton AH, Bejune SA, Fanwick PE, Wall RK (2005) Coord Chem Rev 249:1451–1459

    Article  CAS  Google Scholar 

  17. Pasternack RF, Gibbs EJ, Villafranca JJ (1983) Biochemistry 22:2406–2414

    Article  CAS  Google Scholar 

  18. Marzilli LG, Petho G, Lin M, Kim MS, Dixon DW (1992) J Am Chem Soc 114:7575–7577

    Article  CAS  Google Scholar 

  19. Villanueva A, Jori G (1993) Cancer Lett 73:59–64

    Article  CAS  Google Scholar 

  20. Quiroga ED, Cormick MP, Pons P, Alvarez MG, Durantini EN (2012) Eur J Med Chem 58:332–339

    Google Scholar 

  21. Cano M, Castillero P, Roales J, Pedrosa JM, Brittle S, Richardson T, González-Elipe AR, Barranco A (2010) Sensors Actuators B Chem 150:764–769

    Article  CAS  Google Scholar 

  22. Nitzan Y, Ashkenazi H (2001) Curr Microbiol 42:408–414

    Article  CAS  Google Scholar 

  23. de Sousa Neto D, Tabak M (2012) J Colloid Interface Sci 381:73–82

    Article  Google Scholar 

  24. Cárdenas-Jirón GI, Cortez-Santibañez L (2013) J Mol Model 19:811–824

    Google Scholar 

  25. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357–19363

    Article  CAS  Google Scholar 

  26. Humbel S, Sieber S, Morokuma K (1996) J Chem Phys 105:1959–1967

    Article  CAS  Google Scholar 

  27. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct (THEOCHEM) 461–462:1–21

    Article  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2007) Gaussian, Wallingford CT

  29. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  30. Becke ADJ (1993) Chem Phys 98:5648–5652

    CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  32. Stewart JJP (1989) J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  33. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  34. Sundaresan N, Pillai CKS, Suresh CH (2006) J Phys Chem A 110:8826–8831

    Article  CAS  Google Scholar 

  35. Sundaresan N, Suresh CH (2007) J Chem Theory Comput 3:1172–1182

    Article  CAS  Google Scholar 

  36. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  37. Ernzerhof M, Scuseria GEJ (1999) Chem Phys 110:5029–5036

    CAS  Google Scholar 

  38. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  39. Zhao Y, Truhlar D (2008) Theor Chem Accounts Theory Comput Model (Theor Chim Acta) 120:215–241

    Article  CAS  Google Scholar 

  40. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  41. Cossi M, Barone VJ (2001) Chem Phys 115:4708–4717

    CAS  Google Scholar 

  42. Improta R, Barone V, Santoro F (2007) Angew Chem Int Ed 46:405–408

    Article  CAS  Google Scholar 

  43. Santoro F, Barone V, Gustavsson T, Improta RJ (2006) Am Chem Soc 128:16312–16322

    Article  CAS  Google Scholar 

  44. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone VJ (2005) Chem Phys 124:94107–94121

    Google Scholar 

  45. Cárdenas-Jirón GI, Barboza CA, López R, Menéndez MI (2011) J Phys Chem A 115:11988–11997

    Article  Google Scholar 

  46. López R, Menéndez M, Santander-Nelli M, Cárdenas-Jirón G (2010) Theor Chem Accounts Theory Comput Model (Theor Chim Acta) 127:475–484

    Article  Google Scholar 

  47. Yáñez M, Guerrero J, Aguirre P, Moya SA, Cárdenas-Jirón G (2009) J Organomet Chem 694:3781–3792

    Article  Google Scholar 

  48. Palma M, Cárdenas-Jirón GI, Menéndez Rodríguez MI (2008) J Phys Chem A 112:13574–13583

    Article  CAS  Google Scholar 

  49. Petit L, Quartarolo A, Adamo C, Russo N (2006) J Phys Chem B 110:2398–2404

    Article  CAS  Google Scholar 

  50. Quartarolo AD, Russo N, Sicilia E, Lelj F (2007) J Chem Theory Comput 3:860–869

    Article  CAS  Google Scholar 

  51. Alberto ME, De Simone BC, Cospito S, Imbardelli D, Veltri L, Chidichimo G, Russo N (2012) Chem Phys Lett 552:141–145

    Article  CAS  Google Scholar 

  52. Adamo C, Barone V (1999) Chem Phys Lett 314:152–157

    Article  CAS  Google Scholar 

  53. Jacquemin D, Wathelet VR, Perpète EA, Adamo C (2009) J Chem Theory Comput 5:2420–2435

    Article  CAS  Google Scholar 

  54. Nový J, Urbanová M (2007) Biopolymers 85:349–358

    Article  Google Scholar 

  55. Hong S, Huh S (2003) Bull Korean Chem Soc 24:137–140

    Article  CAS  Google Scholar 

  56. Mukundan NE, Petho G, Dixon DW, Kim MS, Marzilli LG (1994) Inorg Chem 33:4676–4687

    Article  CAS  Google Scholar 

  57. Mukundan NE, Petho G, Dixon DW, Marzilli LG (1995) Inorg Chem 34:3677–3687

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.I.C.J. thanks the financial support of Comisión Nacional de Investigación Científica y Tecnológica de Chile (CONICYT)-CHILE from Project FONDECYT N°1090700 and Departamento de Investigaciones Científicas y Tecnológicas (DICYT)–The University of Santiago of Chile (USACH) from Project Complementary Support by computational time. L.C. thanks to CONICYT by Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria I. Cárdenas-Jirón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1721 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cárdenas-Jirón, G.I., Cortez, L. Assessment of the photosensitization properties of cationic porphyrins in interaction with DNA nucleotide pairs. J Mol Model 19, 2913–2924 (2013). https://doi.org/10.1007/s00894-013-1822-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1822-z

Keywords

Navigation