Skip to main content
Log in

Influence of transition metals on halogen-bonded complexes of MCCBr∙∙∙NCH and HCCBr∙∙∙NCM' (M, M' = Cu, Ag, and Au)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have performed quantum chemical calculations for the MCCBr∙∙∙NCH and HCCBr∙∙∙NCM' (M, M' = Cu, Ag, and Au) halogen-bonded complexes at the MP2 level. The results showed that the transition metals have different influences on the halogen bond donor and the electron donor. The transition metal atom in the former makes the halogen bond weaker, and that in the latter causes it to enhance. Molecular electrostatic potential and natural bond orbital analysis were carried out to reveal the nature of the substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Metrangolo P, Resnati G (eds) (2007) Halogen bonding: fundamentals and applications, structure and bonding. Springer, Berlin

    Google Scholar 

  2. Metrangolo P, Resnati G (2001) Chem Eur J 7:511–2519

    Article  Google Scholar 

  3. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Angew Chem Int Ed 39:1782–1786

    Article  CAS  Google Scholar 

  4. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114–6127

    Article  CAS  Google Scholar 

  5. Loc Nguyen H, Horton PN, Hursthouse MB, Legon AC, Bruce DW (2004) J Am Chem Soc 126:16–17

    Article  Google Scholar 

  6. Legon AC (2010) Phys Chem Chem Phys 12:7736–7747

    Article  CAS  Google Scholar 

  7. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  8. Cavallo G, Metrangolo P, Pilati T, Resnati G, Sansotera M, Terraneo G (2010) Chem Soc Rev 39:3772–3783

    Article  CAS  Google Scholar 

  9. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci USA 101:16789–16794

    Article  CAS  Google Scholar 

  10. Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Chem Soc Rev 40:2267–2278

    Article  CAS  Google Scholar 

  11. Lu YX, Shi T, Wang Y, Yang HY, Yan XH, Luo XM, Jiang HL, Zhu WL (2009) J Med Chem 52:2854–2862

    Article  CAS  Google Scholar 

  12. Lu YX, Wang Y, Zhu WL (2010) Phys Chem Chem Phys 12:4543–4551

    Article  CAS  Google Scholar 

  13. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  14. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  15. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  16. Politzer P, Riley KE, Bulat FA, Murry JS (2012) Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  17. Espallargas GM, Brammer L, Allan DR, Pulham CR, Robertson N, Warren JE (2008) J Am Chem Soc 130:9058–9071

    Article  CAS  Google Scholar 

  18. Smart P, Espallargas GM, Brammer L (2008) Cryst Eng Comm 10:1335–1344

    Article  CAS  Google Scholar 

  19. Brammer L, Espallargas GM, Libri S (2008) Cryst Eng Comm 10:1712–1727

    Article  CAS  Google Scholar 

  20. Espallargas GM, Zordan F, Marin LA, Adams H, Shankland K, van de Streek J, Brammer L (2009) Chem Eur J 15:7554–7568

    Article  Google Scholar 

  21. Clemente-Juan JM, Coronado E, Espallargas GM, Adams H, Brammer L (2010) Cryst Eng Comm 12:2339–2342

    Article  CAS  Google Scholar 

  22. Espallargas GM, Brammer L, Sherwood P (2006) Angew Chem Int Ed 45:435–440

    Article  CAS  Google Scholar 

  23. Zordan F, Espallargas GM, Brammer L (2006) Cryst Eng Comm 8:425–431

    Article  CAS  Google Scholar 

  24. Brammer L, Espallargas GM, Adams H (2003) Cryst Eng Comm 5:343–345

    Article  Google Scholar 

  25. Bertani R, Sgarbossa P, Venzo A, Lelj F, Amati M, Resnati G, Pilati T, Metrangolo P, Terraneo G (2010) Coord Chem Rev 254:677–695

    Article  CAS  Google Scholar 

  26. Xu L, Lv J, Sang P, Zou JW, Yu QS, Xu MB (2011) Chem Phys 379:66–72

    Article  CAS  Google Scholar 

  27. Zhao Q, Feng DC (2012) Acta Phys Chim Sin 28:1361–1367

    CAS  Google Scholar 

  28. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–311

    Article  CAS  Google Scholar 

  29. Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283–296

    Article  CAS  Google Scholar 

  30. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  31. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  32. Frisch MJ et al. (2004) Gaussian 03 (Revision C.02). Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  33. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q., Feng, D. Influence of transition metals on halogen-bonded complexes of MCCBr∙∙∙NCH and HCCBr∙∙∙NCM' (M, M' = Cu, Ag, and Au). J Mol Model 19, 1267–1271 (2013). https://doi.org/10.1007/s00894-012-1676-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1676-9

Keywords

Navigation