Skip to main content
Log in

A novel halogen bond and a better-known hydrogen bond cooperation of neonicotinoid and insect nicotinic acetylcholine receptor recognition

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Neonicotinoid insecticides target the insect nicotinic acetylcholine receptor (nAChR) and are highly effective against the piercing-sucking pests. To explore the molecular interaction mechanism between the neonicotinoids and the insect nAChR, some key neonicotinoid compounds were docked into Aplysia californica acetylcholine binding protein (Ac-AChBP), which serves as a suitable structural surrogate of the insect nAChR. The binding mode study showed that the hydrogen bond force between the electronegative pharmacophore of the neonicotinoids and Cys190NH of the target binding pocket is crucial to the high efficiency of the neonicotinoids. Increasing the coplanarity between the guanidine or amidine and the electronegative pharmacophore of the neonicotinoids could increase the Π-Π stacking effect with Tyr188 of the Ac-AChBP and thus enhance the insecticidal potency. The introduction of an azide group to the chloropyridine ring of the neonicotinoids would reduce its binding ability due to the disappearance of a novel halogen bonding interaction. A series of novel neonicotinoid molecules were designed based on the halogen bonding interaction and two compounds with 6-bromopyridine-3-yl and 6-(trifluoromethyl)-3-pyridinyl were found to be with potential insecticidal activities.

A new binding model between the neonicotinoids and the insect target nAChR with the hydrogen bond force, the π-π stacking effect and the halogen bond interaction is successfully generated by the Surflex-Dock algorithm. Two compounds with 6-bromopyridine-3-yl and 6-(trifluoromethyl)-3-pyridinyl are found to be good neonicotinoids candidates with potentially high activities

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kagabu S, Ishihara R, Hieda Y, Nishimura K, Naruse Y (2007) Insecticidal and neuroblocking potencies of variants of the imidazolidine moiety of imidacloprid-related neonicotinoids and the relationship to partition coefficient and charge density on the pharmacophore. J Agric Food Chem 55:812–818

    Article  CAS  Google Scholar 

  2. Tomizawa M, Zhang NJ, Durkin KA, Olmstead MM, Casida JE (2003) The neonicotinoid electronegative pharmacophore plays the crucial role in the high affinity and selectivity for the Drosophila nicotinic receptor: an anomaly for the nicotinoid cation-π interaction model. Biochemistry 42:7819–7827

    Article  CAS  Google Scholar 

  3. Tomizawa M, Casida JE (2009) Molecular recognition of neonicotinoid insecticides: the determinants of life or death. Chem Res Toxicol 22:476–482

    Article  Google Scholar 

  4. Ohno I, Tomizawa M, Durkin KA, Naruse Y, Casida JE, Kagabu S (2009) Molecular features of neonicotinoid pharmacophore variants interacting with the insect nicotinic receptor. Chem Res Toxicol 22:476–482

    Article  CAS  Google Scholar 

  5. Zhang NJ, Tomizawa M, Casida JE (2002) Structural features of azidopyridinyl neonicotinoid probes conferring high affinity and selectivity for mammalian α4β2 and Drosophila nicotinic receptors. J Med Chem 45:2832–2840

    Article  CAS  Google Scholar 

  6. Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van der Oost J, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276

    Article  CAS  Google Scholar 

  7. Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114

    Article  CAS  Google Scholar 

  8. Arias HR (2000) Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem Int 36:595–645

    Article  CAS  Google Scholar 

  9. Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580

    Article  CAS  Google Scholar 

  10. Rucktooa P, Smit AB, Sixma TK (2009) Insight in nAChR subtype selectivity from AChBP crystal structures. Biochem Pharmacol 78:777–787

    Article  CAS  Google Scholar 

  11. Cashin AL, Petersson EJ, Lester HA, Dougherty DA (2005) Using physical chemistry to differentiate nicotinic from cholinergic agonists at the nicotinic acetylcholine receptor. J Am Chem Soc 127:350–356

    Article  CAS  Google Scholar 

  12. Ihara M, Okajima T, Yamashita A, Oda T, Hirata K, Nishiwaki H, Morimoto T, Akamatsu M, Ashikawa Y, Kuroda S, Mega R, Kuramitsu S, Sattelle DB, Matsuda K (2008) Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin. Invert Neurosci 8:71–81

    Article  CAS  Google Scholar 

  13. Smit AB, Syed NI, Schaap D, van Minnen J, Klumperman J, Kits KS, Lodder H, van der Schors RC, van Elk R, Sorgedrager B, Brejc K, Sixma TK, Geraerts WPM (2001) A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411:261–268

    Article  CAS  Google Scholar 

  14. Talley TT, Harel M, Hibbs RE, Radic Z, Tomizawa M, Casida JE, Taylor P (2008) Atomic interactions of neonicotinoid agonists with AChBP: molecular recognition of the distinctive electronegative pharmacophore. Proc Natl Acad Sci USA 105:7606–7611

    Article  CAS  Google Scholar 

  15. Hansen SB, Sulzenbacher G, Huxford T, Marchot P, Taylor P, Bourne Y (2005) Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J 24:3635–3646

    Article  CAS  Google Scholar 

  16. Celie PHN, Klaassen RV, van Rossum-Fikkert SE, van ElK R, van Nierop P, Smit AB, Sixma TK (2005) Crystal structure of acetylcholine-binding protein from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors. J Biol Chem 280:26457–26466

    Article  CAS  Google Scholar 

  17. Turabekova MA, Rasulev BF, Dzhakhangirov FN, Leszczynska D, Leszczynski J (2010) Aconitum and delphinium alkaloids of curare-like activity QSAR analysis and molecular docking of alkaloids into AChBP. Eur J Med Chem 45:3885–3894

    Article  CAS  Google Scholar 

  18. Ohno I, Tomizawa M, Durkin KA, Casida JE, Kagabu S (2009) Neonicotinoid substituents forming a water bridge at the nicotinic acetylcholine receptor. J Agric Food Chem 57:2436–2440

    Article  CAS  Google Scholar 

  19. Kanne DB, Dick RA, Tomizawa M, Casida JE (2005) Neonicotinoid nitroguanidine insecticide metabolites: synthesis and nicotinic receptor potency of guanidines, aminoguanidines, and their derivatives. Chem Res Toxicol 18:1479–1484

    Article  CAS  Google Scholar 

  20. Tomizawa M, Kagabu S, Ohno I, Durkin KA, Casida JE (2008) Potency and selectivity of trifluoroacetylimino and pyrazinoylimino nicotinic insecticides and their fit at a unique binding site niche. J Med Chem 51:4213–4218

    Article  CAS  Google Scholar 

  21. Zhang NJ, Tomizawa M, Casida JE (2004) α-nitro ketone as an electrophile and nucleophile: synthesis of 3-substituted 2-nitromethylenetetrahydrothiophene and -tetrahydrofuran as Drosophila nicotinic receptor probes. J Org Chem 69:876–881

    Article  CAS  Google Scholar 

  22. Tomizawa M, Latli B, Casida JE (1996) Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors. J Neurochem 67:1669–1676

    Article  CAS  Google Scholar 

  23. Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K I ) and the concentration of inhibititor which cause 50 per cent inhibition (I 50 ) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  Google Scholar 

  24. Zhang NJ, Tomizawa M, Casida JE (2004) Drosophila nicotinic receptors: evidence for imidacloprid insecticide and α-bungarotoxin binding to distinct sites. Neurosci Lett 371:56–59

    Article  CAS  Google Scholar 

  25. Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46:499–511

    Article  CAS  Google Scholar 

  26. Jain AN (1996) Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput Aided Mol Des 10:427–440

    Article  CAS  Google Scholar 

  27. Tripos Associates Inc (2006) SYBYL software, Version 7.3, Tripos Associates Inc, St. Louis

  28. Jürgen B, Thomas EE, Matthias K, Richard JM (2000) Molecular graphics- trends and perspectives. J Mol Model 6:328–340

    Article  Google Scholar 

  29. Lu YX, Shi T, Wang Y, Yang HY, Yan XH, Luo XM, Jiang HL, Zhu WL (2009) Halogen bonding-a novel interaction for rational drug design? J Med Chem 52:2854–2862

    Article  CAS  Google Scholar 

  30. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101:16789–16794

    Article  CAS  Google Scholar 

  31. Duan HX, Liang DS, Yang XL (2010) 3D quantitative structure–property relationship study on cis-neonicotinoid derivatives. Acta Chim Sinica 68:595–602 (in Chinese)

    CAS  Google Scholar 

  32. Zhang WW, Yang XB, Chen WD, Xu XL, Li L, Zhai HB, Li Z (2010) Design, multicomponent synthesis, and bioactivities of novel neonicotinoid analogues with 1,4-dihydropyridine scaffold. J Agric Food Chem 58:2741–2745

    Article  CAS  Google Scholar 

  33. Wang YL, Cheng JG, Qian XH, Li Z (2007) Actions between neonicotinoids and key residues of insect nAChR based on an ab initio quantum chemistry study: hydrogen bonding and cooperative π–π interaction. Bioorg Med Chem 15:2624–2630

    Article  CAS  Google Scholar 

  34. Metrangolo P, Resnati G (2008) Halogen versus hydrogen. Science 321:918–919

    Article  CAS  Google Scholar 

  35. Howard EI, Sanishvili R, Cachau RE, Mitschler A et al (2004) Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66Å. Proteins 55:792–804

    Article  CAS  Google Scholar 

  36. Politzer P, Murraya JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  37. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. J Mol Model 17:3309–3318

    Article  CAS  Google Scholar 

  38. Politzer P, Murray JS, Concha MC (2008) σ-Hole bonding between like atoms: a fallacy of atomic charges. J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  39. Murray JS, Riley KE, Politzer P, Clark T (2010) Directional weak intermolecular interactions: σ-hole bonding. Aust J Chem 63:1598–1607

    Article  CAS  Google Scholar 

  40. Zhu YM, Loso MR, Watson GB et al (2011) Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. J Agric Food Chem 59:2950–2957

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (30800719) and National Science & Technology Support Program in the 12th Five-year Plan of China (2011BAE06B05). The authors thank Mr. Fuheng Chen in China Agricultural University for writing assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxia Duan or Shuhui Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, H., Zhang, W., Zhao, J. et al. A novel halogen bond and a better-known hydrogen bond cooperation of neonicotinoid and insect nicotinic acetylcholine receptor recognition. J Mol Model 18, 3867–3875 (2012). https://doi.org/10.1007/s00894-012-1393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1393-4

Keywords

Navigation