Skip to main content
Log in

Molecular simulation of water removal from simple gases with zeolite NaA

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Water vapor removal from some simple gases using zeolite NaA was studied by molecular simulation. The equilibrium adsorption properties of H2O, CO, H2, CH4 and their mixtures in dehydrated zeolite NaA were computed by grand canonical Monte Carlo simulations. The simulations employed Lennard-Jones + Coulomb type effective pair potential models, which are suitable for the reproduction of thermodynamic properties of pure substances. Based on the comparison of the simulation results with experimental data for single-component adsorption at different temperatures and pressures, a modified interaction potential model for the zeolite is proposed. In the adsorption simulations with mixtures presented here, zeolite exhibits extremely high selectivity of water to the investigated weakly polar/non-polar gases demonstrating the excellent dehydration ability of zeolite NaA in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Bekkum H, Flaningen EM, Jansen JC (eds) (1991) Introduction to zeolite science and practice. Elsevier, Amsterdam

    Google Scholar 

  2. Auerbach SM, Carrado KA, Dutta PK (eds) (2003) Handbook of zeolite science and technology. Dekker, New York

  3. Okamoto K, Kita H, Horii K, Tanaka K, Kondo M (2001) Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures. Ind Eng Chem 40:163–175

    Article  CAS  Google Scholar 

  4. Xu X, Yang W, Liu J, Chen X, Lin L, Stroh N, Brunner H (2000) Synthesis and gas permeation properties of an NaA zeolite membrane. Chem Commun 603–604

  5. Aoki K, Kusakabe K, Morooka S (2000) Separation of gases with an A-type zeolite membrane. Ind Eng Chem 39:2245–2251

    Article  CAS  Google Scholar 

  6. Zhu W, Gora L, van den Berg AWC, Kapteijn F, Jansen JC, Moulijn JA (2005) Water vapour separation from permanent gases by a zeolite-4A membrane. J Membrane Sci 253:57–66

    Article  CAS  Google Scholar 

  7. Dry ME (2002) Fischer-Tropsch process: 1950–2000. Cat Today 71:227–241

    Article  CAS  Google Scholar 

  8. Furukawa S, Goda K, Zhang Y, Nitta T (2004) Molecular simulation study on adsorption and diffusion behavior of ethanol/water molecules in NaA zeolite crystal. J Chem Eng Jpn 37:67–74

    Article  CAS  Google Scholar 

  9. Kristóf T, Csányi É, Rutkai G, Merényi L (2006) Prediction of adsorption equilibria of water–methanol mixtures in zeolite NaA by molecular simulation. Mol Simul 32:869–875

    Article  Google Scholar 

  10. Rutkai G, Csányi É, Kristóf T (2008) Prediction of adsorption and separation of water–alcohol mixtures with zeolite NaA. Microporous Mesoporous Mater 114:455–464

    Article  CAS  Google Scholar 

  11. Csányi É, Kristóf T, Gy L (2009) Potential model development using quantum chemical information for molecular simulation of adsorption equilibria of water–methanol (ethanol)mixtures in zeolite NaA-4. J Phys Chem C 113:12225–12235

    Article  Google Scholar 

  12. Lee SH, Moon GK, Choi SG, Kim HS (1994) Molecular dynamics simulation studies of zeolite-A. 3. Structure and dynamics of Na+ ions and water molecules in a rigid zeolite-A. J Phys Chem 98:1561–1569

    Article  CAS  Google Scholar 

  13. Akten ED, Siriwardane R, Sholl DS (2003) Monte Carlo simulation of single- and binary component adsorption of CO2, N2, and H2 in Zeolite Na-4A. Energ Fuels 17:977–983

    Article  CAS  Google Scholar 

  14. Calero S, Dubbeldam D, Krishna R, Smit B, Vlugt TJH, Denayer JFM, Martens JA, Maesen TLM (2004) Understanding the role of sodium during adsorption: a force field for alkenes in sodium- exchanged faujasites. J Am Chem Soc 126:11377–11386

    Article  CAS  Google Scholar 

  15. Pluth JJ, Smith JV (1980) Accurate redetermination of crystal structure of dehydrated zeolite A. Absence of near zero coordination of sodium. Refinement of Si, Al-ordered superstructure. J Am Chem Soc 102:4704–4708

    Article  CAS  Google Scholar 

  16. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  17. Straub JE, Karplus M (1991) Molecular dynamics study of the photodissociation of carbon monoxide from myoglobin: ligand dynamics in the first 10 ps. Chem Phys 158:221–248

    Article  CAS  Google Scholar 

  18. Darkrim F, Aoufi A, Malbrunot P, Levesque D (2000) Hydrogen adsorption in the NaA zeolite: a comparison between numerical simulations and experiments. J Chem Phys 112:5991–5999

    Article  CAS  Google Scholar 

  19. Kaminski G, Duffy E, Matsui T, Jorgensen W (1994) Free energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model. J Phys Chem 98:13077–13081

    Article  CAS  Google Scholar 

  20. Song W, Rossky PJ, Maroncelli M (2003) Modelling alkane+perfluoroalkane interactions using all-atom potentials: failure of the usual combining rules. J Chem Phys 119:9145–9162

    Article  CAS  Google Scholar 

  21. Waldman M, Hagler A (1993) New combining rules for rare gas van der Waals parameters. J Comput Chem 14:1077–1084

    Article  CAS  Google Scholar 

  22. Gubbins KE, Quirke N (eds) (1997) Molecular simulation and industrial applications: methods, examples and prospects. Gordon and Breach, Amsterdam

    Google Scholar 

  23. Wolf D, Keblinski P, Phillpot SR, Eggebrecht J (1999) Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation. J Chem Phys 110:8254–8282

    Article  CAS  Google Scholar 

  24. Demontis P, Spanu S, Suffritti GB (2001) Application of the Wolf method for the evaluation of Coulombic interactions to complex condensed matter systems: aluminosilicates and water. J Chem Phys 12:8267–8278

    Google Scholar 

  25. Kofke DA, Glandt ED (1988) Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble. Mol Phys 64:1105–1131

    Article  CAS  Google Scholar 

  26. Jaramillo E, Chandross M (2005) Adsorption of small molecules in LTA zeolites. 1. NH3, CO2, and H2O in Zeolite 4A. J Phys Chem B 108:20155–20159

    Article  Google Scholar 

  27. Nicholson D, Parsonage NG (1982) Computer simulation and the statistical mechanics of adsorption. Academic, London

    Google Scholar 

  28. Karavias F, Myers AL (1991) Isosteric heats of multicomponent adsorption: thermodynamics and computer simulations. Langmuir 7:3118–3126

    Article  CAS  Google Scholar 

  29. Mohr RJ, Vorkapic D, Rao MB, Sircar S (1999) Pure and binary gas adsorption equilibria and kinetics of methane and nitrogen on 4A zeolite by isotope exchange technique. Adsorption 5:145–158

    Article  CAS  Google Scholar 

  30. Nair S, Tsapatsis M (2003) Synthesis and properties of zeolitic membranes. In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of zeolite science and technology. Dekker, New York, pp 869–921

Download references

Acknowledgment

This work was supported by the Hungarian Scientific Research Fund (Grant No. OTKA K75132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Kristóf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csányi, É., Ható, Z. & Kristóf, T. Molecular simulation of water removal from simple gases with zeolite NaA. J Mol Model 18, 2349–2356 (2012). https://doi.org/10.1007/s00894-011-1253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1253-7

Keywords

Navigation