Skip to main content
Log in

Intermolecular interactions between gold clusters and selected amino acids cysteine and glycine: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The intermolecular interactions between Aun (n = 3–4) clusters and selected amino acids cysteine and glycine have been investigated by means of density functional theory (DFT). Present calculations show that the complexes possessing Au-NH2 anchoring bond are found to be energetically favored. The results of NBO and frontier molecular orbitals analysis indicate that for the complex with anchoring bonds, lone pair electrons of sulfur, oxygen, and nitrogen atoms are transferred to the antibonding orbitals of gold, while for the complex with the nonconventional hydrogen bonds (Au···H–O), the lone pair electrons of gold are transferred to the antibonding orbitals of O-H bonds during the interaction. Furthermore, the interaction energy calculations show that the complexes with Au-NH2 anchoring bond have relatively high intermolecular interaction energy, which is consistent with previous computational studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mitchell GP, Mirkin CA, Letsinger RL (1999) J Am Chem Soc 121:8122–8123

    Article  CAS  Google Scholar 

  2. Cao YWC, Jin R, Mirkin CA (2002) Science 297:1536–1540

    Article  CAS  Google Scholar 

  3. Cavalleri O, Gonella G, Terreni S, Vignolo M, Floreano L, Morgante A, Canepa M, Rolandi R (2004) Phys Chem Chem Phys 6:4042–4046

    Article  CAS  Google Scholar 

  4. Duan S, Wu DY, Xu X, Luo Y, Tian ZQ (2010) J Phys Chem C 114:4051–4056

    Article  CAS  Google Scholar 

  5. Lazarus LL, Yang ASJ, Chu S, Brutchey RL, Malmstadt N (2010) Lab Chip 10:3377–3379

    Article  CAS  Google Scholar 

  6. Park SJ, Lazarides AA, Mirkin CA, Letsinger RL (2001) Angew Chem Int Edit 40:2909–2912

    Article  CAS  Google Scholar 

  7. Katz E, Willner I (2004) Agnew Chem Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  8. Lopez-Ramirez MR, Garcia-Ramos JV, Otero JC, Castro JL, Sanchez-Cortes S (2007) Chem Phys Lett 446:380–384

    Article  CAS  Google Scholar 

  9. Nazmutdinov RR, Zhang JD, Zinkicheva TT, Manyurov IR, Ulstrup J (2006) Langmuir 22:7556–7567

    Article  CAS  Google Scholar 

  10. Kühnle A, Linderoth TR, Besenbacher F (2006) J Am Chem Soc 128:1076–1077

    Article  Google Scholar 

  11. Schillinger R, Sljivancanin Z, Hammer B, Greber T (2007) Phys Rev Lett 98:136102

    Article  CAS  Google Scholar 

  12. Crespilho FN, Lima FCA, da Silva ABF, Oliveira ON Jr, Zucolottoc V (2009) Chem Phys Lett 469:186–190

    Article  CAS  Google Scholar 

  13. Kühnle A, Linderoth TR, Besenbacher F (2003) J Am Chem Soc 125:14680–14681

    Article  Google Scholar 

  14. Pakiari AH, Jamshidi Z (2007) J Phys Chem A 111:4391–4396

    Article  CAS  Google Scholar 

  15. Sudeep PK, Joseph STS, Thomas KG (2005) J Am Chem Soc 127:6516–6517

    Article  CAS  Google Scholar 

  16. Zhang JD, Chi QJ, Nielsen JU, Friis EP, Andersen JET, Ulstrup J (2000) Langmuir 16:7229–7237

    Article  CAS  Google Scholar 

  17. Wang Y, Chi QJ, Hush NS, Reimers JR, Zhang JD, Ulstrup J (2009) J Phys Chem C 113:19601–19608

    Article  CAS  Google Scholar 

  18. Canepa M, Lavagnino L, Pasquali L, Moroni R, Bisio F, De Renzi V, Terreni S, Mattera L (2009) J Phys Condens Matter 21:264005

    Article  CAS  Google Scholar 

  19. De Renzi V, Rousseau R, Marchetto D, Biagi R, Scandolo S, Del Pennino U (2008) J Phys Chem C 112:14439–14445

    Article  Google Scholar 

  20. Höffling B, Ortmann F, Hannewald K, Bechstedt F (2010) Phys Rev B 81:045407

    Article  Google Scholar 

  21. Mateo-Marti E, Rogero C, Gonzalez C, Sobrado JM, de Andres PL, Martin-Gago JA (2010) Langmuir 26:4113–4118

    Article  CAS  Google Scholar 

  22. Beek AD (1993) J Chem Phys 98:5648–5652

    Article  Google Scholar 

  23. Lee C, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  24. Ross RB, Powers JM, Atashroo T, Ermler WC, LaJohn LA, Christiansen PA (1990) J Chem Phys 93:6654–6670

    Article  CAS  Google Scholar 

  25. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  26. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  27. Kryachko ES, Karpfen A, Remacle F (2005) J Phys Chem A109:7309–7318

    Google Scholar 

  28. Liu YX, Zhang DJ, Zhou JH, Liu CB (2010) J Phys Chem A 114:6164–6170

    Article  CAS  Google Scholar 

  29. Kryachko ES, Remacle F (2005) J Phys Chem B 109:22746–22757

    Article  CAS  Google Scholar 

  30. Kryachko ES, Remacle F (2007) J Chem Phys 127(194305):1–11

    Google Scholar 

  31. Lv G, Wei FD, Jiang H, Zhou YY, Wang XM (2009) J Mol Struct Theochem 915:98–104

    Article  CAS  Google Scholar 

  32. Kryachko ES, Remacle F (2005) Nano Lett 5:935–739

    Article  Google Scholar 

  33. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  34. Reed AE, Weinhold F (1985) J Chem Phys 83:1736–1740

    Article  CAS  Google Scholar 

  35. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  36. Reed AE, Schleyer PvR (1990) J Am Chem Soc 112:1434–1445

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford, CT

    Google Scholar 

  38. Sargent-Welch (1980) Table of Periodic Properties of the Elements. Sargent-Welch Scientific Company, Skokie, IL

    Google Scholar 

  39. Li YC, Yang CL, Sun MY, Li XX, An YP, Wang MS, Ma XG, Wang DH (2009) J Phys Chem A 113:1353–1359

    Article  CAS  Google Scholar 

  40. Gronbeck H, Hellman A, Gavrin A (2007) J Phys Chem A 111:6062–6067

    Article  Google Scholar 

  41. Grybos R, Benco L, Bucko T, Hafner J (2009) J Comput Chem 30:1910–1922

    Article  CAS  Google Scholar 

  42. Ding XL, Li ZY, Yang JL, Hou JG, Zhu QS (2004) J Chem Phys 121:2558–2562

    Article  CAS  Google Scholar 

  43. Di Felice R, Selloni A, Molinari E (2003) J Phys Chem B 107:1151–1156

    Article  Google Scholar 

  44. Kryachko ES, Remacle F (2005) Chem Phys Lett 404:142–149

    Article  CAS  Google Scholar 

  45. Shafai GS, Shetty S, Krishnamurty S, Shah V, Kanhere DG (2007) J Chem Phys 126:014704

    Article  Google Scholar 

  46. Taylor KJ, Pettiette-Hall CL, Cheshnovsky O, Smalley RE (1992) J Chem Phys 96:3319–3327

    Article  CAS  Google Scholar 

  47. Kumar A, Mishra PC, Suhai S (2006) J Phys Chem A 110:7719–7727

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges financial support from the National Science Foundation of China (21073164, 20673098), the Natural Science Foundation of Zhejiang Province (Y4100620), and the Research Foundation of Education Bureau of Zhejiang Province (Y200906517). We thank the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University) for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu-Jun Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, HJ., Lei, QF. & Fang, WJ. Intermolecular interactions between gold clusters and selected amino acids cysteine and glycine: a DFT study. J Mol Model 18, 645–652 (2012). https://doi.org/10.1007/s00894-011-1112-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1112-6

Keywords

Navigation