Skip to main content
Log in

Molecular dynamics simulation of the Staphylococcus aureus YsxC protein: molecular insights into ribosome assembly and allosteric inhibition of the protein

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

YsxC from Staphylococcus aureus is a member of the GTPase protein family, and is involved in the ribosomal assembly and stability of this microorganism through its interactions with the L17, S2 and S10 ribosomal proteins. Inhibition of its interactions with L17, S2, S10 and the β′ subunit of RNA polymerase influences ribosomal assembly, which may affect the growth of the microorganism. This makes YsxC a novel target for the design of inhibitors to treat the disease caused by S. aureus. Understanding the interaction mechanism between YsxC and its partners would aid in the identification of potential catalytic residues, which could then be targeted to inhibit its function. Accordingly, in the present study, an in silico analysis of the interactions between YsxC and L17, S2 and S10 was performed, and the potential residues involved in these interactions were identified. Based on the simulation results, a possible mechanism for the interactions between these proteins was also proposed. Finally, six ligands from among a library of 81,000 chemical molecules were found to interact with parts of the G2 and switch II regions of the YsxC protein. Moreover, their interactions with the YsxC protein were observed to provoke changes at its GTP-binding site, which suggests that the binding of these ligands leads to a reduction in GTPase activity, and they were also found to affect the interactions of YsxC with its partners. This observation indicates that the proposed interacting site of YsxC may act as an allosteric site, and disrupting interactions at this site might lead to novel allosteric inhibition of the YsxC protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chambers HF (2005) Community-associated MRSA-resistance and virulence converge. N Engl J Med 352:1485–1487. doi:10.1056/NEJMe058023

    Article  CAS  Google Scholar 

  2. NABI Biopharmaceuticals (2007) Key facts about S. aureus infections (2007) NABI Biopharmaceuticals, Miami. http://www.nabi.com. Accessed 10 April 2007

  3. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–530. doi:10.1056/NEJM199808203390806

  4. Lindsay JA, Holden MT (2006) Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Func Integr Genomics 6:186–201. doi:10.1007/s10142-005-0019-7

  5. Tejerina C, Reig A, Codina J, Safont J, Baena P, Mirabet V (1992) An epidemiological study of burn patients hospitalized in Valencia, Spain during 1989. Burns 18:15–18. doi:10.1016/0305-4179(92)90112-8

    Article  CAS  Google Scholar 

  6. Centers for Disease Control and Prevention (2003) Community-associated MRSA: frequently asked questions. Centers for Disease Control and Prevention, Atlanta. http://www.cdc.gov/ncidod. Accessed Aug 2003

  7. Centers for Disease Control and Prevention. Community-associated MRSA: fact sheet (2003) Centers for Disease Control and Prevention, Atlanta. http://www.cdc.gov/ncidod. Accessed Feb 2003

  8. Shopsin B, Mathema B, Martinez J, Ha E, Campo ML, Fierman A, Krasinski K, Kornblum J, Alcabes P, Waddington M et al (2000) Prevalence of methicillin-resistant and methicillin-susceptible Staphylococcus aureus in the community. J Infect Dis 182:359–362. doi:10.1086/315695

    Google Scholar 

  9. Keiichi H (2001) Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect Dis 1:147–155. doi:10.1016/S1473-3099(01)00091-3

    Article  Google Scholar 

  10. Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165–2169. doi:10.1126/science.286.5447.2165

    Article  CAS  Google Scholar 

  11. Schaefer L, Uicker WC, Wicker-Planquart C, Foucher AE, Jault JM, Britton RA (2006) Multiple GTPases participate in the assembly of the large ribosomal subunit in Bacillus subtilis. J Bacteriol 188:8252–8258. doi:10.1128/JB.01213-06

    Google Scholar 

  12. Cooper EL, García-Lara J, Foster SJ (2009) YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability. BMC Microbiol 9:266. doi:10.1186/1471-2180-9-266

    Article  Google Scholar 

  13. Prágai Z, Harwood CR (2000) YsxC, a putative GTP-binding protein essential for growth of Bacillus subtilis 168. J Bacteriol 182:6819–6823

    Article  Google Scholar 

  14. Wicker-Planquart C, Foucher AE, Louwagie M, Britton RA, Jault JM (2008) Interactions of an essential Bacillus subtilis GTPase, YsxC, with ribosomes. J Bacteriol 190:681–690. doi:10.1128/JB.01193-07

    Google Scholar 

  15. Christopoulos A, May LT, Avlani VA, Sexton PM (2004) G-protein-coupled receptor allosterism: the promise and the problem(s). Biochem Soc Trans 32:873–877. doi:10.1042/BST0320873

    Google Scholar 

  16. May LT, Leach K, Sexton PM, Christopoulos A (2007) Allosteric modulation of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 47:1–51. doi:10.1146/annurev.pharmtox.47.120505.105159

    Google Scholar 

  17. Ruzheinikov SN, Das SK, Sedelnikova SE, Baker PJ, Artymiuk PJ, Garcia-Lara J, Foster SJ, Rice DW (2004) Analysis of the open and closed conformations of the GTP-binding protein YsxC from Bacillus subtilis. J Mol Biol 339:265–278. doi:10.1016/j.jmb.2004.03.043

    Google Scholar 

  18. Vassylyev DG, Shirouzu M, Wada T, Yokoyama S (2009) The crystal structure of the bacteria-specific L17 ribosomal protein from Thermus thermophilus. doi:10.2210/pdb1gd8/pdb

  19. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30 S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348. doi:10.1038/35030019

    Article  CAS  Google Scholar 

  20. Gao H, Sengupta J, Valle M, Korostelev A, Eswar N, Stagg SM, van Roey P, Agrawal RK, Harvey ST, Sali A, Chapman MS, Frank J (2003) Study of the structural dynamics of the E. coli 70 S ribosome using real-space refinement. Cell 113:789–801. doi:10.1016/S0092-8674(03)00427-6

    Google Scholar 

  21. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  Google Scholar 

  22. Eswar N, Webb B, Marti-Renom MA, Madhusudhan M, Eramian D, Shen MY, Pieper U, Sali A (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci 50:2.9.1–2.9.31. doi:10.1002/0471140864.ps0209s50

    Google Scholar 

  23. Eramian D, Shen MY, Devos D, Melo F, Sali A, Marti-Renom MA (2006) A composite score for predicting errors in protein structure models. Protein Sci 15:1653–1666. doi:10.1110/ps.062095806

    Article  CAS  Google Scholar 

  24. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4:435–447. doi:10.1021/ct700301q

    Article  CAS  Google Scholar 

  25. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236. doi:10.1021/ja9621760

    Article  CAS  Google Scholar 

  26. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. doi:10.1063/1.445869

    Article  CAS  Google Scholar 

  27. Kawata M, Nagashima U (2001) Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity. Chem Phys Lett 340:165–172. doi:10.1016/S0009-2614(01)00393-1

    Article  CAS  Google Scholar 

  28. Hess B, Bekker H, Fraaije J, Berendsen HJC (1997) A linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

    Article  CAS  Google Scholar 

  29. Miyamoto S, Kollman PA (1992) SETTLE—an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13:952–962. doi:10.1002/jcc.540130805

    Google Scholar 

  30. Martonák R, Laio A, Parrinello M (2003) Predicting crystal structures: the Parrinello–Rahman method revisited. Phys Rev Lett 90:075503. doi:10.1103/PhysRevLett.90.075503

    Google Scholar 

  31. Laskoswki RA, MacArthur MW, Moss DS, Thorton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. doi:10.1107/S0021889892009944

    Article  Google Scholar 

  32. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. doi:10.1002/pro.5560020916

    Article  CAS  Google Scholar 

  33. Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85. doi:10.1038/356083a0

    Article  CAS  Google Scholar 

  34. Brylinski M, Skolnick J (2008) A threading-based method (FINDSITE) for ligand binding site prediction and functional annotation. Proc Natl Acad Sci USA 105:129–134. doi:10.1073/pnas.0707684105

  35. Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein–ligand binding sites. Bioinformatics 21:1908–1916. doi:10.1093/bioinformatics/bti315

    Google Scholar 

  36. Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Hau J, Martin O, Kuznetsov D, Falquet L (2007) MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res 35:W433–W437. doi:10.1093/nar/gkm352

    Article  Google Scholar 

  37. Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37(D):205–210. doi:10.1093/nar/gkn845

    Article  Google Scholar 

  38. Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32(W):327–331. doi:10.1093/nar/gkh454

    Article  Google Scholar 

  39. von Grotthuss M, Pas J, Rychlewski L (2003) Ligand-Info, searching for similar small compounds using index profiles. Bioinformatics 19:1041–1042. doi:10.1093/bioinformatics/btg117

    Article  Google Scholar 

  40. Schuettelkopf AW, van Aalten DMF (2004) PRODRG—a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D60:1355–1363. doi:10.1107/S0907444904011679

    Google Scholar 

  41. de Vries SJ, van Dijk ADJ, Bonvin AM (2006) WHISCY: what information does surface conservation yield? Application to data-driven docking. Protein Struct Funct Bioinf 63:479–489. doi:10.1002/prot.20842

    Google Scholar 

  42. Chen H, Zhou HX (2005) Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Protein Struct Funct Bioinf 61:21–35. doi:10.1002/prot.20514

    Google Scholar 

  43. Zhou HX, Shan Y (2001) Prediction of protein interaction sites from sequence profiles and residue neighbor list. Protein Struct Funct Bioinf 44:336–343. doi:10.1002/prot.1099

    Article  CAS  Google Scholar 

  44. Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. Lect Notes Comput Sci 2452:185–200. doi:10.1007/3-540-45784-4_14

    Google Scholar 

  45. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367. doi:10.1093/nar/gki481

    Article  CAS  Google Scholar 

  46. Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Protein Struct Funct Bioinf 69:139–159. doi:10.1002/prot.21495

    Google Scholar 

  47. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein–protein docking approach based on biochemical and/or biophysical information. J Am Chem Soc 125:1731–1737. doi:10.1021/ja026939x

    Google Scholar 

  48. de Vries SJ, van Dijk AD, Krzeminski M, van Dijk M, Thureau A, Hsu V, Wassenaar T, Bonvin AM (2007) HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Protein Struct Funct Bioinf 69:726–733. doi:10.1002/prot.21723

    Google Scholar 

  49. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng 8:127–134. doi:10.1093/protein/8.2.127

    Google Scholar 

  50. Lefèvre F, Rémy MH, Masson JM (1997) Alanine-stretch scanning mutagenesis: a simple and efficient method to probe protein structure and function. Nucleic Acids Res 25:447–448. doi:10.1093/nar/25.2.447

    Article  Google Scholar 

  51. Feyfant E, Sali A, Fiser A (2007) Modeling mutations in protein structures. Protein Sci 16:2030–2041. doi:10.1110/ps.072855507

    Article  CAS  Google Scholar 

  52. Ditlev EB, William MCJ, Andrew PC, Brian TW, Ramakrishnan V (2002) Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. J Mol Biol 316:725–768. doi:10.1006/jmbi.2001.5359

    Google Scholar 

Download references

Acknowledgments

RK, Manivel and Kannan thank the University Grants Commission, Government of India (UGC) for funding this Major Research Project, and the Rajiv Gandhi National Fellowship for also providing funding assistance. Research at the Laboratory of the Centre for Excellence in Bioinformatics, Pondicherry University, India is funded by the Department of Information Technology (DIT) and the Department of Biotechnology (DBT), Government of India, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Ramadas.

Additional information

Amit Goyal and Muthu Kannan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyal, A., Muthu, K., Panneerselvam, M. et al. Molecular dynamics simulation of the Staphylococcus aureus YsxC protein: molecular insights into ribosome assembly and allosteric inhibition of the protein. J Mol Model 17, 3129–3149 (2011). https://doi.org/10.1007/s00894-011-0998-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-0998-3

Keywords

Navigation