Skip to main content

Advertisement

Log in

Can molecular dynamics simulations assist in design of specific inhibitors and imaging agents of amyloid aggregation? Structure, stability and free energy predictions for amyloid oligomers of VQIVYK, MVGGVV and LYQLEN

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The aggregation modes of hexapeptide fragments of Tau, Insulin and Aβ peptide (VQIVYK, MVGGVV and LYQLEN) were found from their microcrystalline structures that had been recently resolved by X-ray analysis. The atomic structures reveal a dry self-complementary interface between the neighboring β-sheet layers, termed “steric zipper”. In this study we perform several all-atom molecular dynamics simulations with explicit water to analyze stability of the crystalline fragments of 2-10 hexapeptides each and their analogs with single glycine replacement mutations to investigate the structural stability, aggregation behavior and thermodynamic of the amyloid oligomers. Upon comparing single and double layer models, our results reveal that additional strands contribute significantly to the structural stability of the peptide oligomers for double layer model, while in the case of single layer model the stability decreases (or remains the same in the case of LYQLEN). This is in agreement with the previous studies performed on different types of amyloid models. We also replaced the side-chains participating in the steric zipper interfaces with glycine. None of the mutants were structurally stable compared to the respective wild type model, except for mutants V2G and V6G in MVGGVV2 case. The exception can be explained by structural features of this particular polymorph. The double layer decamer and dodecamer aggregates of the wild type hexapeptides appear to be stable at 300K, which is confirmed by the conservation of high anti-parallel β-sheet content throughout the whole simulation time. Deletions of the side chains resulted in decline of secondary structure content compared to corresponding wild type indicating that the role of the replaced amino acid in stabilizing the structure. Detailed analysis of the binding energy reveals that stability of these peptide aggregates is determined mainly by the van der Waals and hydrophobic forces that can serve as quantitative measure of shape complementarities between the side chains. This observation implies that interactions among side chains forming the dehydrated steric zipper, rather than among those exposed to water, are the major structural determinant. The electrostatic repulsion destabilizes the studied double layer aggregates in two cases, while stabilizes the other two. Negative total binding free energy indicates that both wild type and mutants complex formation is favorable. However, the mutants complexation is less favorable than the wild type’s. The present study provides the atomic level understanding of the aggregation behavior and the driving force for the amyloid aggregates, and could be useful for rational design of amyloid inhibitors and amyloid-specific biomarkers for diagnostic purposes.

5ns Sh-St6, M1G, 10ns Sh-St6, M1G

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Selkoe DJ (2003) Nature 426:900–904

    Article  CAS  Google Scholar 

  2. Hamley IW (2007) Angew Chem Int Edit 46:8128–8147

    Article  CAS  Google Scholar 

  3. Makin OS, Serpell LC (2005) Febs J 272:5950–5961

    Google Scholar 

  4. Nelson R, Eisenberg D (2006) Curr Opin Struc Biol 16:260–265

    Article  CAS  Google Scholar 

  5. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Nature 447:453–457

    Article  CAS  Google Scholar 

  6. Wiltzius JJW, Sievers SA, Sawaya MR, Cascio D, Popov D, Riekel C, Eisenberg D (2008) Protein Sci 17:1467–1474

    Article  CAS  Google Scholar 

  7. Ivanova MI, Sievers SA, Sawaya MR, Wall JS, Eisenberg D (2009) Proc Natl Acad Sci USA 106:18990–18995

    Article  CAS  Google Scholar 

  8. Park J, Kahng B, Hwang W (2009) PLoS Comput Biol 5:17

    Article  Google Scholar 

  9. De Simone A, Esposito L, Pedone C, Vitagliano L (2008) Biophys J 95:1965–1973

    Article  Google Scholar 

  10. Gsponer J, Haberthur U, Caflisch A (2003) Proc Natl Acad Sci USA 100:5154–5159

    Article  CAS  Google Scholar 

  11. Esposito L, Paladino A, Pedone C, Vitagliano L (2008) Biophys J 94:4031–4040. doi:10.1529/biophysj.107.118935

    Article  CAS  Google Scholar 

  12. Esposito L, Pedone C, Vitagliano L (2006) Proc Natl Acad Sci USA 103:11533–11538

    Article  CAS  Google Scholar 

  13. Wei GH, Song W, Derreumaux P, Mousseau N (2008) Front Biosci 13:5681–5692

    Article  CAS  Google Scholar 

  14. Wu C, Wang ZX, Lei HX, Zhang W, Duan Y (2007) J Am Chem Soc 129:1225–1232

    Article  CAS  Google Scholar 

  15. Berryman JT, Radford SE, Harris SA (2009) Biophys J 97:1–11

    Article  CAS  Google Scholar 

  16. Chang LK, Zhao JH, Liu HL, Liu KT, Chen JT, Tsai WB, Ho Y (2009) J Biomol Struct Dyn 26:731–740

    CAS  Google Scholar 

  17. Nerelius C, Johansson J, Sandegren A (2009) Front Biosci 14:1716–U3856

    Article  CAS  Google Scholar 

  18. Rauk A (2008) Dalt Transact 1273-1282

  19. Rauk A (2009) Chem Soc Rev 38:2698–2715

    Article  CAS  Google Scholar 

  20. Teplow DB, Lazo ND, Bitan G, Bernstein S, Wyttenbach T, Bowers MT, Baumketner A, Shea JE, Urbanc B, Cruz L, Borreguero J, Stanley HE (2006) Acc Chem Res 39:635–645

    Article  CAS  Google Scholar 

  21. Berriman J, Serpell LC, Oberg KA, Fink AL, Goedert M, Crowther RA (2003) Proc Natl Acad Sci USA 100:9034–9038

    Article  CAS  Google Scholar 

  22. Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Nature 435:773–778

    Article  CAS  Google Scholar 

  23. Sunde M, Blake C (1997) Adv Prot Chem , Vol 50. Academic, San Diego, pp 123-159

  24. Devlin GL, Knowles TPJ, Squires A, McCammon MG, Gras SL, Nilsson MR, Robinson CV, Dobson CM, MacPhee CE (2006) J Mol Biol 360:497–509

    Article  CAS  Google Scholar 

  25. Hong DP, Fink AL (2005) Biochemistry 44:16701–16709

    Article  CAS  Google Scholar 

  26. Wilhelm KR, Yanamandra K, Gruden MA, Zamotin V, Malisauskas M, Casaite V, Darinskas A, Forsgren L, Morozova-Roche LA (2007) Eur J Neurol 14:327–334

    CAS  Google Scholar 

  27. Brange J, Andersen L, Laursen ED, Meyn G, Rasmussen E (1997) J Pharm Sci 86:517–525

    Article  CAS  Google Scholar 

  28. Ahmad A, Uversky VN, Hong D, Fink AL (2005) J Biol Chem 280:42669–42675

    Article  CAS  Google Scholar 

  29. Zhang ZQ, Chen H, Bai HJ, Lai LH (2007) Biophys J 93:1484–1492

    Article  CAS  Google Scholar 

  30. Xu WX, Ping J, Li WF, Mu YG (2009) J Chem Phys 130:8

    Google Scholar 

  31. Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, Hall J, Glabe C (2009) J Biol Chem 284:4230–4237

    Article  CAS  Google Scholar 

  32. Quist A, Doudevski L, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Proc Natl Acad Sci USA 102:10427–10432

    Article  CAS  Google Scholar 

  33. Vitagliano L, Stanzione F, De Simone A, Esposito L (2009) Biopolymers 91:1161–1171

    Article  CAS  Google Scholar 

  34. http://www.doe-mbi.ucla.edu/∼sawaya/chime/xtalpept (2009)

  35. D.A. Case TAD TEC, III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Ross C. Walker, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) University of California, San Francisco

  36. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  37. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  38. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  39. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  40. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  41. Chong LT, Duan Y, Wang L, Massova I, Kollman PA (1999) Proc Natl Acad Sci USA 96:14330–14335

    Article  CAS  Google Scholar 

  42. Hardy J, Selkoe DJ (2002) Science 297:353–356

    Article  CAS  Google Scholar 

  43. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) Nature 440:352–357

    Article  CAS  Google Scholar 

  44. Sciarretta KL, Gordon DJ, Meredith SC (2006) Amyloid, Prions, and Other Protein Aggregates. Pt C Elsevier, San Diego, pp 273–312

    Google Scholar 

  45. Bogan AA, Thorn KS (1998) J Mol Biol 280:1–9

    Article  CAS  Google Scholar 

  46. Haydar SN, Yun HED, Staal RGW, Hirst WD (2009) Annu Rep Med Chem, Vol 44. Elsevier, San Diego, pp 51–69

    Book  Google Scholar 

  47. Blazer LL, Neubig RR (2009) Neuropsychopharmacology 34:126–141

    Article  CAS  Google Scholar 

  48. Otto M, Lewczuk P, Wiltfang J (2008) Methods 44:289–298

    Article  CAS  Google Scholar 

  49. Tenidis K, Waldner M, Bernhagen J, Fischle W, Bergmann M, Weber M, Merkle ML, Voelter W, Brunner H, Kapurniotu A (2000) J Mol Biol 295:1055–1071

    Article  CAS  Google Scholar 

  50. Porat Y, Mazor Y, Efrat S, Gazit E (2004) Biochemistry 43:14454–14462

    Article  CAS  Google Scholar 

  51. Sato T, Kienlen-Campard P, Ahmed M, Liu W, Li HL, Elliott JI, Aimoto S, Constantinescu SN, Octave JN, Smith SO (2006) Biochemistry 45:5503–5516

    Article  CAS  Google Scholar 

  52. Takahashi T, Ohta K, Mihara H. Prot Struct Func Bioinf 78:336-347

  53. Kim YS, Lee JH, Ryu J, Kim DJ (2009) Curr Pharm Des 15:637–658

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation (CCF/CHE 0832622). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The author appreciates the anonymous reviewers for their insightful comments, which greatly helped improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artëm E. Masunov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berhanu, W.M., Masunov, A.E. Can molecular dynamics simulations assist in design of specific inhibitors and imaging agents of amyloid aggregation? Structure, stability and free energy predictions for amyloid oligomers of VQIVYK, MVGGVV and LYQLEN. J Mol Model 17, 2423–2442 (2011). https://doi.org/10.1007/s00894-010-0912-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0912-4

Keywords

Navigation