Skip to main content
Log in

Hydrogen bonding interactions in PN···HX complexes: DFT and ab initio studies of structure, properties and topology

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Spin-restricted DFT (X3LYP and B3LYP) and ab initio (MP2(fc) and CCSD(fc)) calculations in conjunction with the Aug-CC-pVDZ and Aug-CC-pVTZ basis sets were performed on a series of hydrogen bonded complexes PN···HX (X = F, Cl, Br) to examine the variations of their equilibrium gas phase structures, energetic stabilities, electronic properties, and vibrational characteristics in their electronic ground states. In all cases the complexes were predicted to be stable with respect to the constituent monomers. The interaction energy (ΔE) calculated using a super-molecular model is found to be in this order: PN···HF > PN···HCl > PN···HBr in the series examined. Analysis of various physically meaningful contributions arising from the Kitaura-Morokuma (KM) and reduced variational space self-consistent-field (RVS-SCF) energy decomposition procedures shows that the electrostatic energy has significant contribution to the over-all interaction energy. Dipole moment enhancement (Δμ) was observed in these complexes expected of predominant dipole-dipole electrostatic interaction and was found to follow the trend PN···HF > PN···HCl > PN···HBr at the CCSD level. However, the DFT (X3LYP and B3LYP) and MP2 levels less accurately determined these values (in this order HF < HCl < HBr). Examination of the harmonic vibrational modes reveals that the PN and HX bands exhibit characteristic blue- and red shifts with concomitant bond contraction and elongation, respectively, on hydrogen bond formation. The topological or critical point (CP) analysis using the static quantum theory of atoms in molecules (QTAIM) of Bader was considered to classify and to gain further insight into the nature of interaction existing in the monomers PN and HX, and between them on H-bond formation. It is found from the analysis of the electron density ρ c , the Laplacian of electron charge density ∇2ρc, and the total energy density (H c ) at the critical points between the interatomic regions that the interaction N···H is indeed electrostatic in origin (ρc > 0, ∇2ρc > 0 and Hc > 0 at the BCP) whilst the bonds in PN (ρc > 0, ∇2ρc > 0 and Hc < 0) and HX ((ρc > 0, ∇2ρc < 0 and Hc < 0)) are predominantly covalent. A natural bond orbital (NBO) analysis of the second order perturbation energy lowering, E(2), caused by charge transfer mechanism shows that the interaction N···H is n(N) → BD*(HX) delocalization.

The following figure shows that the N end of molecular phosphorous nitride (PN) is linearly connected (represented by ···) to the H end of molecular hydrogen fluoride (HF) obtained from a RCCSD(fc)/Aug-CC-pVDZ level calculation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford Univ Press, New York

    Google Scholar 

  2. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, US

    Google Scholar 

  3. Desiraju GR, Sreiner T (2003) The weak hydrogen bond. Oxford Univ Press, New York

    Google Scholar 

  4. Varadwaj PR, Husain MM (2006) Chem Phys Lett 424:227–232

    Article  CAS  Google Scholar 

  5. Varadwaj PR (2007) Int J Quantum Chem 107:1194–1204

    Article  CAS  Google Scholar 

  6. Rozenberg M, Loewenschuss A, Marcus Y (2000) Phys Chem Chem Phys 2:2699–2702

    Article  CAS  Google Scholar 

  7. Ratajczak H (1972) J Phys Chem 76:3991–3992

    Article  CAS  Google Scholar 

  8. Kemp DD, Gordon MS (2008) J Phys Chem A 112:4885–4894

    Article  CAS  Google Scholar 

  9. Ziurys LM (1987) Astrophys J 321:L81–L85

    Article  CAS  Google Scholar 

  10. The encyclopedia of Science. Available via DIALOG. http://www.daviddarling.info/encyclopedia/I/ismols.html

  11. Schnick W, Lücke (1992) Angew Chem Int Ed Engl 31:213–215

    Article  Google Scholar 

  12. Scherer OJ (1992) Angew Chem Int Ed Engl 31:170–171

    Article  Google Scholar 

  13. Fukukawa Y, Mikami O, Okamura M, Hirota Y (1986) Proc Electrochem Soc 86:34 Also see via DIALOG. http://www.patentstorm.us/patents/6586318/description.html

    Google Scholar 

  14. Ahlrichs R, Bär M, Plitt HS, Schnöckel H (1989) Chem Phys Lett 161:179–184

    Article  CAS  Google Scholar 

  15. Schnöckel H, Mehner T, Plitt HS, Schunck SC (1989) J Am Chem Soc 111:4578–4582

    Article  Google Scholar 

  16. Atkins RM, Timms PL (1977) Spectrochim Acta Part A 33:853–857

    Article  Google Scholar 

  17. Petrie S (2005) J Phys Chem A 109:6326–6334

    Article  CAS  Google Scholar 

  18. Zhengfa HU, Zhenya W, Haiyang LI, Shikang Z (2002) Sci China A 45:1211–1218

    Google Scholar 

  19. Tang SN, Chuang CC, Mollaaghababa R, Klemperer W, Chang HC (1996) J Chem Phys 105:4385–4387

    Article  Google Scholar 

  20. Mckellar ARW, Lu Z (1993) J Mol Spectrosc 161:542–551

    Article  CAS  Google Scholar 

  21. Howard NW, Legon AC (1989) J Chem Phys 90:672–678

    Article  CAS  Google Scholar 

  22. McMillen C, Bender D, Eliades M, Danzeiers D, Wofford BA, Bevan JB (1988) Chem Phys Lett 152:87–93

    Article  Google Scholar 

  23. Soper PD, Legon AC, Flygare WH (1981) J Chem Phys 74:2138–2142

    Article  CAS  Google Scholar 

  24. Legon AC, Soper PD, Keenan MR, Minton TK, Balle TJ, Flygare WH (1980) J Chem Phys 73:583–584

    Article  CAS  Google Scholar 

  25. Grabowski SJ (2002) J Mol Struct 615:239–245

    Article  CAS  Google Scholar 

  26. McDowell SAC (2006) Chem Phys Lett 424:239–242

    Article  CAS  Google Scholar 

  27. Xu X, Goddard WA (2004) Proc Natl Acad Sci 101:2673

    Article  CAS  Google Scholar 

  28. Scuseria GE, Schaefer HF III (1989) J Chem Phys 90:3700–3703

    Article  CAS  Google Scholar 

  29. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  30. Becke AD (1988) J Chem Phys 88:1053–1062

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  32. Xu X, Goddard WA (2004) J Phys Chem A 108:2305–2313

    Article  CAS  Google Scholar 

  33. Xu X, Zhang Q, Muller RP, Goddard WA (2005) J Chem Phys 122:014105

    Article  Google Scholar 

  34. Varadwaj PR, Cukrowki I, Marques HM (2008) J Phys Chem A 112:10657–10666

    Article  CAS  Google Scholar 

  35. Varadwaj PR, Cukrowki I, Marques HM (2009) J Mol Struct Theochem 902:21–32

    Article  CAS  Google Scholar 

  36. Tsuzuki S, Lüthi HP (2001) J Chem Phys 114:3949–3957

    Article  CAS  Google Scholar 

  37. Rao L, Ke H, Xu X, Yan Y (2009) J Chem Theory Comput 5:86–96

    Article  CAS  Google Scholar 

  38. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  39. Morokuma K, Kitaura K (1981) In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York, p 215

    Google Scholar 

  40. Bagus PS, Hermann K, Bauschlicher CW Jr (1984) J Chem Phys 80:4378–4386

    Article  CAS  Google Scholar 

  41. Stevens WJ, Fink W (1987) Chem Phys Lett 139:15–22

    Article  CAS  Google Scholar 

  42. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  43. Frisch MJ et al (2004) GAUSSIAN 03, Revision C.02. Gaussian Inc, Pittsburg, PA

    Google Scholar 

  44. Schmidt MW, Baldridge KK, Boatz LA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  45. MacMolPlt, version 7.2.1, Bode BM, Gordon MS (1998) J Mol Graphics Mod 16:133–138

  46. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  47. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  48. Pople JA (1982) Faraday Discuss Chem Soc 73:7–17

    Article  CAS  Google Scholar 

  49. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  50. Blanco F, Alkorta I, Solimannejad M, Elguero J (2009) J Phys Chem A 113:3237–3244

    Article  CAS  Google Scholar 

  51. Wong NB, Cheung YS, Wu DY, Ren Y, Tian A, Li WK (2000) J Phys Chem A 104:6077–6082

    Article  CAS  Google Scholar 

  52. Varadwaj PR, Cukrowski I, Marques HM (2009) DFT RX3LYP and RPBEPBE studies on the structural, electronic, and vibrational properties of some amino-alcohol ligands. Theochem. doi:10.1016/j.theochem.2009.08.009

    Google Scholar 

  53. Ludwig R (2000) J Mol Liq 84:65–75

    Article  CAS  Google Scholar 

  54. Reed AE, Wienhold F, Curtiss LA, Pochatko DJ (1986) J Chem Phys 84:5687–5705

    Article  CAS  Google Scholar 

  55. O’Brien SE, Popelier PLA (1999) Can J Chem 77:28–36

    Article  Google Scholar 

  56. Goodman L, Sauers RR (2007) J Comput Chem 28:269–275

    Article  CAS  Google Scholar 

  57. Weinhold F (1998) In: Schleyer PVR, Allinger ML, Clark T, Gasteiger J, Kollman PA, Schaefer HF, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 3. John Wiley & Sons, Chichester, p 1792

    Google Scholar 

  58. Glendening EE, Reed AE, Carpenter JE, Weinhold F (2004) NBO 3.0, as implemented in GAUSSIAN 03, Revision C.02. Gaussian Inc, Pittsburg, PA

    Google Scholar 

  59. Keith TA (2008) AIMAll 08.05.04. Available via DIALOG. http://aim.tkgristmill.com

  60. Computational Chemistry Comparison and Benchmark DataBase, NIST Standard Reference Database 101. Available via DIALOG. http://cccbdb.nist.gov/default.htm

  61. Rauhut G, Pulay P (1995) J Am Chem Soc 117:4167–4172

    Article  CAS  Google Scholar 

  62. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  63. Baker J, Jarzecki AA, Pulay P (1998) J Phys Chem A 102:1412

    Article  CAS  Google Scholar 

  64. The Cambridge Structural Database, Radii & Bond lengths. Available via DIALOG. http://www.ccdc.cam.ac.uk/products/csd/radii/table.php4

  65. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  66. Goubet M, Asselin P, Manceron L, Soulard P, Perchard JP (2003) Phys Chem Chem Phys 5:3591–3594

    Article  CAS  Google Scholar 

  67. Andrews L (1984) J Phys Chem 88:2940–2949

    Article  CAS  Google Scholar 

  68. McIntosh A, Gallegos AM, Lucchese RR, Bevan JW (1997) J Chem Phys 107:8327–8337

    Article  CAS  Google Scholar 

  69. Nesbitt DJ, Lovejoy CM (1992) J Chem Phys 96:5712–5725

    Article  CAS  Google Scholar 

  70. Bevan JW, Legon AC, Millen DJ (1980) Proc R Soc Lond A 370:239

    Article  CAS  Google Scholar 

  71. Legon AC, Millen DJ, North HM (1987) J Chem Phys 86:2530–2535

    Article  CAS  Google Scholar 

  72. Pimentel GC, McClelland AL (1960) The hydrogen bond. Freeman, San Francisco, CA

    Google Scholar 

  73. Murray JS, Ranganathan S, Politzer P (1991) J Org Chem 56:3734–3737

    Article  CAS  Google Scholar 

  74. Hagelin H, Murray JS, Brinck T, Berthelot M, Politzer P (1995) Can J Chem 73:483–488

    Article  CAS  Google Scholar 

  75. Bader RFW, Essén H (1984) J Chem Phys 80:1943–1960

    Article  CAS  Google Scholar 

  76. Bobrov MF, Popova GV, Tsirelson VG (2006) Russ J Phys Chem 80:584–590

    Article  CAS  Google Scholar 

  77. Bader RFW (1998) J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  78. Bone RGA, Bader RFW (1996) J Phys Chem 100:10892–10911

    Article  CAS  Google Scholar 

  79. Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627–628

    Article  Google Scholar 

  80. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  81. Jenkins S, Morrison I (2000) Chem Phys Lett 317:97–102

    Article  CAS  Google Scholar 

  82. Espinosa E, Alkorta I, Elguero J (2007) Euro J Chem Phys 117:5529

    Google Scholar 

  83. Nakanishi W, Hayashi S, Narahara K (2008) J Phys Chem A 112:13593–13599

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PRV greatly acknowledges Japan Society for the Promotion of Science (JSPS) for the award of a Postdoctoral Fellowship and funding (Grant No: P 08349). The author thanks Prof. Sean A. C. McDowell and Prof. K. Kawaguchi for helpful discussions and rewarding supports. Thanks are due to the staffs of the Okayama University information science center for providing SX-6i supercomputing facility for GAUSSIAN 03 calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Risikrishna Varadwaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varadwaj, P.R. Hydrogen bonding interactions in PN···HX complexes: DFT and ab initio studies of structure, properties and topology. J Mol Model 16, 965–974 (2010). https://doi.org/10.1007/s00894-009-0603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0603-1

Keywords

Navigation