Skip to main content
Log in

Computational (DFT and TD DFT) study of the electron structure of the tautomers/conformers of uridine and deoxyuridine and the processes of intramolecular proton transfers

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Six uridine and six deoxyuridine isomers were studied at the B3LYP and TD B3LYP theoretical level and 6–31+G(d) basis function. The stability and the excited states of the isomers were studied in order to clarify some known experimental data. It was established that the rotation of the oxo uracil ring in uridine is energetically more likely to occur in the excited state than in the ground state, driven by the bright 1 ππ* state and the dark charge transfer 1nπ* state. Very high energy barriers (on the So) were found for thermal intramolecular proton transfer processes.

Oxo uracil tautomer of uridine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hosein S (2004) Canadian AIDS Treatment Information Exchange (http://www.thebody.com/content/art30244.html, accessed: 14.07.2009)

  2. Walker UA, Langmann P, Miehle N, Zilly M, Klinker H, Petschner F (2004) AIDS 187:1085–1086

    Article  Google Scholar 

  3. Dagan T, Sable C, Bray J, Gerschenson M (2002) Mitochondrion 1:397–412

    Article  CAS  Google Scholar 

  4. Carlezon WA Jr, Mague SD, Parow AM, Stoll AL, Cohen BM, Renshaw PF (2005) Biol Psychiatry 57:343–350

    Article  CAS  Google Scholar 

  5. Nicholas RA, Watt WC, Lazarowski ER, Li Q, Harden K (1996) Mol Pharmacol 50:224–229

    CAS  Google Scholar 

  6. Qu W, Tabisz GC (2006) J Chem Phys 124:184305–184314

    Article  Google Scholar 

  7. Bureekaew S, Hasegawa J, Nakatsuji H (2006) Chem Phys Lett 425:367–371

    Article  CAS  Google Scholar 

  8. Merchan M, Gonzalez-Luque R, Climent T, Serrano-Andres L, Rodriguez E, Reguero M, Pelaez D (2006) J Phys Chem, B 110:26471–26476

    Article  CAS  Google Scholar 

  9. Matsika S (2004) J Phys Chem A 108:7584–7590

    Article  CAS  Google Scholar 

  10. Santoro F, Barone V, Gustavsson T, Improta R (2006) J Am Chem Soc 128:16312–16322

    Article  CAS  Google Scholar 

  11. Lorentzon J, Fülscher MP, Ross BO (1995) J Am Chem Soc 117:9265–9273

    Article  CAS  Google Scholar 

  12. Mezzache S, Alves S, Pepe C, Quelquejeu M, Fournier F, Valery JM, Tabet JC (2005) J Mass Spectrom 40:722–730

    Article  CAS  Google Scholar 

  13. Green EA, Rosenstein RD, Shiono R, Abraham DJ (1975) Acta Cryst B 31:102–107

    Article  Google Scholar 

  14. Rahman A, Wilson HR (1972) Acta Cryst B 28:2260–2270

    Article  CAS  Google Scholar 

  15. Ivanov AY, Krasnokutski SA, Sheina G, Blagoi YP (2003) Spectrochim Acta A 59:1959–1973

    Article  Google Scholar 

  16. Atkins PW (1986) Physical chemistry, 3rd edn. Oxford University Press, Oxford

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Rev A.7. Gaussian Inc, Pittsburgh PA

  18. Zhurko GA, Zhurko DA (2007) ChemCraft, ver 1.5 (build 282). http://www.softpedia.com/

  19. Clark LB, Peschel GG, Tinoco I Jr (1965) J Phys Chem 69:3615–3618

    Article  CAS  Google Scholar 

  20. Okahata Y, Nakayama H (2000) In: Abstacts, 15th Symposium on Biofunctional Chemistry, pp 128–129

  21. Nakayama H, Ohno H, Okahata Y (2001) Chem Commun (Camb) 21:2300–2301

    Article  Google Scholar 

  22. Miles DW, Robins RK, Eyring H (1967) Proc Natl Acad Sci USA 57:1139–1145

    Article  Google Scholar 

  23. Hammond GS (1955) J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  24. Leffler JE (1953) Science 117:340–341

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil B. Delchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delchev, V.B. Computational (DFT and TD DFT) study of the electron structure of the tautomers/conformers of uridine and deoxyuridine and the processes of intramolecular proton transfers. J Mol Model 16, 749–757 (2010). https://doi.org/10.1007/s00894-009-0593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0593-z

Keywords

Navigation