Skip to main content
Log in

Excited state intramolecular proton transfer in 3-hydroxy flavone and 5-hydroxy flavone: A DFT based comparative study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Potential energy (PE) curves for the intramolecular proton transfer in the ground (GSIPT) and excited (ESIPT) states of 3-hydroxy-flavone (3HF) and 5-hydroxy-flavone (5HF) were studied using DFT/B3LYP (6-31G (d,p)) and TD-DFT/B3LYP (6-31G (d,p)) level of theory respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer for both the compounds. Calculated PE curves of 3HF for the ground and excited singlet states proton transfer process explain its four state laser diagram. Excited states PE calculations support the ESIPT process to both 5HF and 3HF. The difference in ESIPT emission process of 3HF and 5HF have been explained in terms of HOMO and LUMO electron distribution of the enol and keto tautomer of these two compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chou PT, MxMorrow D, Aartsma TJ (1984) J Phys Chem 88:4596–4599. doi:10.1021/j150664a032

    Article  CAS  Google Scholar 

  2. Catalan J, Paz JL, Valle JCD, Kasha M (1997) J Phys Chem A 198:5284–5291. doi:10.1021/jp970551k

    Article  Google Scholar 

  3. Keck J, Roessler M, Schroeder C, Stueber GJ, Waiblinger F, Stein M, Legourrierec D, Kramer HEA, Hoier H, Henkel S, Fischer P, Port H, Hirsch T, Tytz G, Hayoz P (1998) J Phys Chem B 102:6975–6985. doi:10.1021/jp9818380

    Article  CAS  Google Scholar 

  4. Martinej ML, Cooper WC, Chou TT (1992) Chem Phys Lett 193:151–154. doi:10.1016/0009-2614(92)85699-B

    Article  Google Scholar 

  5. Shynkar VV, Klymchenko AS, Kunzelmann C, Duportail G, Muller CD, Demchenko AP, Freyssinet J-M, Mely Y (2007) J Am Chem Soc 129:2187–2193. doi:10.1021/ja068008h

    Article  CAS  Google Scholar 

  6. Weller A (1961) Prog React Kinet 1:187–214

    CAS  Google Scholar 

  7. Lahmani F, Zehnacker-Rentien A (1997) J Phys Chem A 101:6141–6147. doi:10.1021/jp9712516

    Article  CAS  Google Scholar 

  8. Gormin D, Sytnik A, Kasha M (1997) J Phys Chem A 101:672–677. doi:10.1021/jp962019n

    Article  CAS  Google Scholar 

  9. McGarry PF, Jockusch S, Fujiwara Y, Kaprinidis NA, Turro NJ (1997) J Phys Chem A 101:764–767. doi:10.1021/jp961382r

    Article  CAS  Google Scholar 

  10. Guallar V, Moreno M, Lluch J, Amat-Guerri MF, Douhal A (1996) J Phys Chem 100:19789–19794. doi:10.1021/jp962026b

    Article  CAS  Google Scholar 

  11. Keck J, Kramer HEA, Port H, Hirsch T, Fischer P, Rytz G (1996) J Phys Chem 100:14468–14475. doi:10.1021/jp961081h

    Article  CAS  Google Scholar 

  12. Parsapour F, Kelley DF (1996) J Phys Chem 100:2791–2798. doi:10.1021/jp9520106

    Article  CAS  Google Scholar 

  13. Tarkka RM, Jenekhe SA (1996) Chem Phys Lett 260:533–538. doi:10.1016/0009-2614(96)00910-4

    Article  CAS  Google Scholar 

  14. Zhang H, van der Meulen P, Glasbeek M (1996) Chem Phys Lett 253:97–102. doi:10.1016/0009-2614(96)00213-8

    Article  CAS  Google Scholar 

  15. Mitra S, Das R, Bhattacharyya SP, Mukherjee S (1997) J Phys Chem A 101:293–298. doi:10.1021/jp961555c

    Article  CAS  Google Scholar 

  16. Yi PG, Liang YH, Cao CZ (2005) Chem Phys 315:297–302. doi:10.1016/j.chem phys.2005.04.046

    Article  CAS  Google Scholar 

  17. Nagaoka S, Nagashima U (1990) J Phys Chem 94:1425–1431. doi:10.1021/j100367a042

    Article  CAS  Google Scholar 

  18. Nagaoka S, Nagashima U (1989) Chem Phys 136:153–163. doi:10.1016/0301-0104(89)80043-6

    Article  CAS  Google Scholar 

  19. Verner MV, Scheiner S (1995) J Phys Chem 99:642–649. doi:10.1021/j100002a031

    Article  Google Scholar 

  20. Sobolewski AL, Domcke W (1994) Chem Phys 184:115–124. doi:10.1016/0301-0104(94)00091-3

    Article  CAS  Google Scholar 

  21. Catalan J, Palomar J, De PJLG (1997) J Phys Chem A 101:7914–7921. doi:10.1021/jp971582i

    Article  CAS  Google Scholar 

  22. Carlo GD, Mascolo N, Izzo AA, Capasso F (1999) Life Sci 65:337–353. doi:10.1016/S0024-3205(99)00120-4

    Article  Google Scholar 

  23. Hollman PCH, Arts ICW (2000) J Sci Food Agric 80:1081–1093

    Article  CAS  Google Scholar 

  24. Ahcrne SA, O’Brien NM (2002) Nutrition 18:75–81

    Article  Google Scholar 

  25. Shahidi F, Wanasundara PKJPD (1992) Crit Rev Food Sci Nutr 32:67–103

    Article  CAS  Google Scholar 

  26. Sarkar M, Sengupta PK (1991) Chem Phys Lett 179:68–72. doi:10.1016/0009-2614(91)90293-1

    Article  CAS  Google Scholar 

  27. Pivovarenko VG, Tuganova AV, Klimchenko AS, Demchenko AP (1997) Cell Mol Biol Lett 2:355–364

    CAS  Google Scholar 

  28. Klymchenko AS, Demchenko AP (2002) Langmuir 18:5637–5639. doi:10.1021/la025760x

    Article  CAS  Google Scholar 

  29. Bondar OP, Pivovarenko V, Rowe GES (1998) Biochim Biophys Acta 1369:119–130. doi:10.1016/S0005-2736(97)00218-6

    Article  CAS  Google Scholar 

  30. Klymchenko A, Duportail G, Ozturk T, Pivovarenko V, Mily Y, Demchenko A (2002) Chem Biol 9:1199–1208. doi:10.1016/S1074-5521(02)00244-2

    Article  CAS  Google Scholar 

  31. Shynkar VV, Klymchenko AS, Mely Y, Duportail G, Pivovarenko VG (2004) J Phys Chem B 108:18750–18755. doi:10.1021/jp0467189

    Article  CAS  Google Scholar 

  32. Roshal AD, Grigorovich AV, Doroshenko AD, Pivovarenko VG, Demchenko AP (1999) J Photochem Photobiol A Chem 127:89–100. doi:10.1016/S1010-6030(99)00105-7

    Article  CAS  Google Scholar 

  33. Poteau X, Saroja G, Spies C, Brown RG (2004) J Photochem Photobiol A Chem 162:431–439. doi:10.1016/S1010-6030(03)00429-5

    Article  CAS  Google Scholar 

  34. Sengupta PK, Kasha M (1979) Chem Phys Lett 68:382–385. doi:10.1016/0009-2614(79)87221-8

    Article  CAS  Google Scholar 

  35. Khan AU, Kasha M (1983) Proc Natl Acad Sci USA 80:1767–1770

    Article  CAS  Google Scholar 

  36. Sytnik A, Gormin D, Kasha M (1994) Proc Natl Acad Sci USA 91:11968–11972

    Article  CAS  Google Scholar 

  37. Catalan J, del Valle JC, Diaz C, Palomar J, De PJLG, Kasha M (1999) Int J Quantum Chem 72:421–438

    Article  CAS  Google Scholar 

  38. Dennison SM, Guharay J, Sengupta PK (1999) Spectrochim Acta Part A 55A:1127–1132

    CAS  Google Scholar 

  39. Klymchenko AS, Duportail G, Mely Y, Demchenko AP (2003) Proc Natl Acad Sci USA 100:11219–11224. doi:10.1073/pnas.1934603100

    Article  CAS  Google Scholar 

  40. Chou P-T, Chen Y-C, Yu W-S, Cheng Y-M (2001) Chem Phys Lett 340:89–97. doi:10.1016/S0009-2614(01)00399-2

    Article  CAS  Google Scholar 

  41. McMorrow D, Kasha M (1984) Proc Natl Acad Sci USA 81:3375–3378

    Article  CAS  Google Scholar 

  42. Strandjord AJG, Courtncy SH, Friedrich DM, Barbara PF (1983) J Phys Chem 87:1125–1133. doi:10.1021/j100230a008

    Article  CAS  Google Scholar 

  43. Woolfe GJ, Thistlethwaite PJ (1981) J Am Chem Soc 103:6916–6923. doi:10.1021/ja00413a026

    Article  CAS  Google Scholar 

  44. del Valle JC (2006) J Chem Phys 124:104506–104518. doi:10.1063/1.2177256

    Article  Google Scholar 

  45. Falkovskaia, Pivovarenko VG, del Valle JC (2003) J Phys Chem A 107:3316–3325. doi:10.1021/jp021791p

    Article  CAS  Google Scholar 

  46. Falkovskaia, Pivovarenko VG, del Valle JC (2002) Chem Phys Lett 352:415–420. doi:10.1016/S0009-2614(01)01490-7

    Article  CAS  Google Scholar 

  47. De SP, Ash S, Bar HK, Bhui DK, Dalai S, Misra A (2007) Theochem 824:8–14. doi:10.1016/j.theochem.2007.08.014

    Article  Google Scholar 

  48. Catalan J, del Valle JC, Palomer J, Diaz C, de Paz JLG (1999) J Phys Chem A 103:10921–10934. doi:10.1021/jp992631p

    Article  CAS  Google Scholar 

  49. Bouchy A, Rinaldi D, Rivail JL (2004) Int J Quant Chem 96:273–281

    Article  CAS  Google Scholar 

  50. Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009–4037. doi:10.1021/cr0505627

    Article  CAS  Google Scholar 

  51. Datta A, Mallajosyula SS, Pati SK (2007) Acc Chem Res 40:213–221. doi:10.1021/ar0682738

    Article  CAS  Google Scholar 

  52. Becke AD (1993) J Chem Phys 98:5648–5652. doi:10.1063/1.464913; Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789. doi:10.1103/Phys Rev B.37–785

    Article  CAS  Google Scholar 

  53. Barone V, Adamo C (1995) J Phys Chem 99:15062–15068. doi:10.101/j100041a022

    Article  CAS  Google Scholar 

  54. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JR, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, P. Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford, CT

  55. Vener MV, Scheiner S (1995) J Phys Chem 99:642–649. doi:10.1021/j100002a031

    Article  CAS  Google Scholar 

  56. Sobolewski AL, Domcke W (1998) Chem Phys 232:257–265. doi:10.1016/S0301-0104(98)00110-4

    Article  CAS  Google Scholar 

  57. Maheshwari S, Chowdhury A, Sathyamurthy N, Mishra H, Tripathi HB, Panda M, Chandrasekhar J (1999) J Phys Chem A 103:6257–6262. doi:10.1021/jp9911999

    Article  CAS  Google Scholar 

  58. De SP, Ash S, Dalai S, Misra A (2007) Theochem 807:33–41. doi:10.1016/j.theochem.2006.12.010

    Article  CAS  Google Scholar 

  59. De SP, Ash S, Bar HK, Bhui DK, Sarkar P, Sahoo GP, Misra A (2009) Spectrochim Acta A 71:1728–1735. doi:10.1016/j.saa.2008.06.032

    Article  Google Scholar 

  60. Hunsberger IM (1950) J Am Chem Soc 72:5626–5635. doi:10.1021/ja01168a074

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support received from Department of Science & Technology (ref. No. SR/FTP/PS-60/2003) and University Grant Commission, New Delhi for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Misra.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1

(DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ash, S., De, S.P., Pyne, S. et al. Excited state intramolecular proton transfer in 3-hydroxy flavone and 5-hydroxy flavone: A DFT based comparative study. J Mol Model 16, 831–839 (2010). https://doi.org/10.1007/s00894-009-0578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0578-y

Keywords

Navigation