Skip to main content
Log in

Experimental and theoretical investigations of spectroscopic properties of azobenzene derivatives in solution

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The UV-Vis spectra of series of polymethylmethacrylate (PMMA) copolymers with attached trans-azobenzene derivatives were measured in 1,1,2-trichloroethane. In order to gain some insight into the recorded spectra, the quantum chemical calculations were performed for the substituted azobenzenes using both configuration interaction with single excitations method (CIS) as well as density functional theory (DFT) with B3LYP and PBE0 functionals. The calculations were performed in solvent. In particular, we found that the PBE0 excitation energies are in very good agreement with the experimental data.

The plots of orbital contour surfaces for molecule II. The molecular orbitals were calculated at the PBE0/6-311++G(d,p) level of theory. The upper plot presents contour surface of HOMO and the lower presents contour surface of LUMO. Shown are the contour surfaces of orbital amplitude 0.04 (red) and -0.04 (blue)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schanze KS, Mattox TF, Whitten DG (1982) J Am Chem Soc 104:1733–1735

    Article  CAS  Google Scholar 

  2. Schanze KS, Mattox TF, Whitten DG (1983) J Org Chem 48:2808–2813

    Article  CAS  Google Scholar 

  3. Nishimura N, Kosako S, Sueishi Y (1984) Bull Chem Soc Jpn 57:1617–1625

    Article  CAS  Google Scholar 

  4. Sueishi Y, Asano M, Yamamoto S, Nishimura N (1985) Bull Chem Soc Jpn 58:2729–2730

    Article  CAS  Google Scholar 

  5. Sugihara O, Kunioka S, Nonaka Y, Aizawa R, Koike Y, Kinoshita T, Sasaki K (1991) J Appl Phys 70:7249–7252

    Article  CAS  Google Scholar 

  6. Harada J, Ogawa K, Tomoda S (1997) Acta Cryst B 53:662–672

    Article  Google Scholar 

  7. Kawata S, Kawata Y (2000) Chem Rev 100:1777–1788

    Article  CAS  Google Scholar 

  8. Ichimura K (2000) Chem Rev 100:1847–1873

    Article  CAS  Google Scholar 

  9. Tamai N, Miyasaka H (2000) Chem Rev 100:1875–1890

    Article  CAS  Google Scholar 

  10. Matczyszyn K, Bartkowiak W, Leszczynski J (2001) J Mol Struct 565–566:53–57

    Article  Google Scholar 

  11. Matczyszyn K, Sworakowski J (2003) J Phys Chem B 107:6039–6045

    Article  CAS  Google Scholar 

  12. Schmidt B, Sobotta C, Malkmus S, Laimgruber S, Braun M, Zinth W, Gilch P (2004) J Phys Chem A 108:4399–4404

    Article  CAS  Google Scholar 

  13. Blevins AA, Blanchard GJ (2004) J Phys Chem B 108:4962–4968

    Article  CAS  Google Scholar 

  14. Poprawa-Smoluch M, Baggerman J, Zhang H, Maas HPA, De Cola L, Brouwer AM (2006) J Phys Chem A ASAP publication

  15. Kucharski S, Janik R, Motschmann H, Radüge C (1999) New J Chem 23:765–771

    Article  CAS  Google Scholar 

  16. Cimiraglia R, Hofmann HJ (1994) Chem Phys Lett 217:430–435

    Article  CAS  Google Scholar 

  17. Cimiraglia R, Asano T, Hofmann HJ (1996) Gaz Chim Ital 126:679–684

    CAS  Google Scholar 

  18. Cattaneo P, Persico M (1999) Phys Chem Chem Phys 1:4739–4743

    Article  CAS  Google Scholar 

  19. Tamulis A, Tamuliene J, Balevicius ML, Nunzi JM (2000) Mol Cryst Liq Cryst 354:1063–1072

    Google Scholar 

  20. Diau EWG (2004) J Phys Chem A 108:950–956

    Article  CAS  Google Scholar 

  21. Crecca CR, Roitberg AE (2006) J Chem Phys A 110:8188–8203

    Article  CAS  Google Scholar 

  22. Nonnenberg C, Gaub H, Frank I (2006) Chem Phys Chem 7:1455–1461

    Article  CAS  Google Scholar 

  23. Lagugnè-Labarthet F, Adamietz F, Rodriguez V, Sourisseau C (2006) J Phys Chem B 110:13689–13693

    Article  Google Scholar 

  24. Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009–4037

    Article  CAS  Google Scholar 

  25. Head-Gordon M, Rico RJ, Oumi M, Lee TJ (1994) Chem Phys Lett 219:21–29

    Article  CAS  Google Scholar 

  26. Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian, Wallingford CT, 2004

  27. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3040

    Article  Google Scholar 

  28. Tomasi J, Mennucci B, Cancès E (1999) J Mol Str (Theochem) 464:211–226

    Article  CAS  Google Scholar 

  29. Chipman DM (2002) Theor Chem Acc 107:80–89

    CAS  Google Scholar 

  30. Marques MAL, Gross EKU (2004) Annu Rev Phys Chem 55:427–455

    Article  CAS  Google Scholar 

  31. Furche F, Burke K (2005) Time-dependent density functional theory in quantum chemistry. In: Spellmeyer D (ed) Annual Reports in Computational Chemistry, Vol 1. Elsevier

  32. Casida ME (1995) Time-dependent density functional response theory for molecules. In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore

    Google Scholar 

  33. Van Leeuwen R (2001) Int J Mod Phys B 15:1969–2023

    Article  Google Scholar 

  34. Appel H, Gross EKU, Burke K (2003) Phys Rev Lett 90:043005

    Article  CAS  Google Scholar 

  35. Schaftenaar G, Noordik JH (2000) J Comp Aided Mol Des 14:123–134

    Article  CAS  Google Scholar 

  36. Perpète EA, Wathelet V, Preat J, Lambert C, Jacquemin D (2006) J Chem Theory Comput 2:434–440

    Article  Google Scholar 

  37. Jacquemin D, Bouhy D, Perpète EA (2006) J Chem Phys 124:204321

    Article  Google Scholar 

  38. Jacquemin D, Wathelet V, Perpète EA (2006) J Phys Chem A 110:9145–9152

    Article  CAS  Google Scholar 

  39. Jacquemin D, Preat J, Wathelet V, Fontaine M, Perpète EA (2006) J Am Chem Soc 128:2072–2083

    Article  CAS  Google Scholar 

  40. Ruudberg E, Salek P, Helgaker T, Ågren H (2005) J Chem Phys 123:184108

    Article  Google Scholar 

Download references

Acknowledgements

The calculations have been carried out in Poznan Supercomputing and Networking Center (PCSS). This research was supported by the grant 3 T08E08430 from the Ministry of Education and Science. One of the authors (R.Z.) is scholarship holder of the Foundation for Polish Science (edition 2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Zaleśny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaleśny, R., Matczyszyn, K., Kaczmarek, A. et al. Experimental and theoretical investigations of spectroscopic properties of azobenzene derivatives in solution. J Mol Model 13, 785–791 (2007). https://doi.org/10.1007/s00894-007-0199-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0199-2

Keywords

Navigation