Skip to main content
Log in

CHIH-DFT determination of the molecular structure infrared spectra, UV spectra and chemical reactivity of three antitubercular compounds: Rifampicin, Isoniazid and Pyrazinamide

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Three of the most frequent antitubercular agents employed against Mycobacterium tuberculosis are: Rifampicin, Isoniazid and Pyrazinamide. It has been proven that the use of these antitubercular agents together, shortens the treatment period from 12–18 months to 6 months [1]. In this work we use a new Density Functional Theory chemistry model called CHIH-DFT (Chihuahua-Heterocycles-Density Functional Theory) that reflects the mixture of Hartree Fock exchange and DFT exchange, according to a mixing parameter based on empirical rules suited for heterocyclic systems. This new chemistry model was used to calculate the molecular structure of these antitubercular compounds, as well as their infrared, UV spectra, chemical reactivity and electronic properties. The UV and infrared spectra were obtained by experimental techniques. The calculated molecular structure, UV and IR spectra values from CHIH-DFT were compared with experimentally obtained values and theoretical studies. These results are in good agreement with experimental and theoretical studies. We also predicted using the relative electrophilicity and relative nucleophilicity concepts as defined by Roy et al. [2] the chemical active sites for the three antitubercular compounds as well as their electronegativity, ionization potential, electron affinity, hardness, dipole moment, EHOMO-ELUMO gap energy, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chopra I, Brennan P (1998) Tuberc Lung D 78(2):89–98

    Article  Google Scholar 

  2. Roy RK, Pal S, Hirao K (1999) J Chem Phys 110(17):8236–8245

    Article  CAS  Google Scholar 

  3. Dessen A, Quernard A, Blanchard JS, Jacobs Jr WR, Sacchettini JC (1995) Science 267(1995):1638–1641

    Article  CAS  Google Scholar 

  4. Manetti F, Corelli F, Biava M, Fioravanti R, Porreta GC, Botta M (2000) Il Fármaco 55:484–491

    Article  CAS  Google Scholar 

  5. Secretaria de Salud, Mexico, Boletín epidemiología (2006) http://www.dgepi.salud.gob.mx/boletin/2006/sem02/pdf/cua1y2.pdf

  6. Sociedad Argentina de Pediatria, Criterios de diagnóstico y tratamiento de la tuberculosis infantil (2002) Arch Argent pediatr 100(2):159–178

    Google Scholar 

  7. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Wallingford, CT

    Google Scholar 

  8. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  9. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822–2827

    Article  CAS  Google Scholar 

  10. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230

    Article  CAS  Google Scholar 

  11. Petersson GA, Bennet A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193–2218

    Article  CAS  Google Scholar 

  12. Petersson GA, Al-Laham MA (1991) J Chem Phys 94:6081–6090

    Article  CAS  Google Scholar 

  13. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  14. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  15. Flores-Holguın N, Glossman-Mitnik D (2004) J Mol Struct Theochem 681:77–82

    Article  Google Scholar 

  16. Flores-Holguın N, Glossman-Mitnik D (2005) J Mol Struct Theochem 717:1–3

    Article  Google Scholar 

  17. Flores-Holguın N, Glossman-Mitnik D (2005) J Mol Struct Theochem 723:231–234

    Article  Google Scholar 

  18. Mendoza-Wilson AM, Glossman-Mitnik D (2004) J Mol Struct Theochem 681:71–76

    Article  CAS  Google Scholar 

  19. Mendoza-Wilson AM, Glossman-Mitnik D (2005) J Mol Struct Theochem 716:67–72

    Article  CAS  Google Scholar 

  20. Rodrıguez-Valdez LM, Martınez-Villafane A, Glossman-Mitnik D (2005) J Mol Struct Theochem 681:83–88

    Article  Google Scholar 

  21. Rodrıguez-Valdez LM, Martınez-Villafane A, Glossman-Mitnik D (2005) J Mol Struct Theochem 716:61–65

    Article  Google Scholar 

  22. Glossman-Mitnik D (2007) Theor Chem Acc 117:57–68

    Article  CAS  Google Scholar 

  23. Glossman-Mitnik D (2007) J Mol Model 13:43–46

    Article  CAS  Google Scholar 

  24. Lewars E (2003) Computational chemistry - introduction to the theory and applications of molecular and quantum mechanics. Kluwer, Norwell, MA, USA

    Google Scholar 

  25. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  26. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  27. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  28. Thompson MA, Zerner MC (1991) J Am Chem Soc 113:8210–8215

    Article  CAS  Google Scholar 

  29. Zerner MC (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 2. VCH, New York, pp 313–366

    Chapter  Google Scholar 

  30. Zerner MC, Correa de Mello P, Hehenberger M (1982) Int J Quant Chem 21:251–258

    Article  Google Scholar 

  31. Hanson LK, Fajer J, Thompson MA, Zerner MC (1987) J Am Chem Soc 109:4728–4730

    Article  CAS  Google Scholar 

  32. Anderson WP, Edwards WD, Zerner MC (1986) Inorg Chem 25:2728–2732

    Article  CAS  Google Scholar 

  33. Gorelsky SI (2005) SWizard program, http://www.sg-chem.net/

  34. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  35. Hirshfeld FL (1977) Theor Chim Acta 44(2):129–138

    Article  CAS  Google Scholar 

  36. Jensen LH (1954) J Am Chem Soc 76:4663–4667

    Article  CAS  Google Scholar 

  37. Silverstein RM, Webster FX (1998) Spectrometric identification of organic compounds, 6th edn. Wiley, New York

    Google Scholar 

  38. http://www.aist.go.jp/RIODB/SDBS/cgi-bin/cre_index.cgi

  39. Savitskaya AV, Paschenko LA, Dobrotvorsky AE (1989) Farmatsiya (Moscow, Russian federation) 38(5):39–44

    CAS  Google Scholar 

  40. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  41. http://redpoll.pharmacy.ualberta.ca/drugbank/

  42. Takaki Y, Sasada Y, Watanabe T (1960) Acta Crystallogr 13:693–702

    Article  CAS  Google Scholar 

  43. Chis V, Pirnau A, Jurca T, Vasilescu M, Simon S, Cozar O, David L (2005) Chem Phys 316:153–163

    Article  CAS  Google Scholar 

  44. http://webbook.nist.gov

  45. Gadret M, Goursolle M, Leger JM, Colleter JC (1975) Acta Crystallogr B 31(5):1454–1462

    Article  Google Scholar 

  46. Ovcharova G, Dimitrova D, Kuneva K (1982) Farmatsiya (Sofia, Bulgaria) 32(4):49–53

    CAS  Google Scholar 

  47. Angeloni I, Marzocchi MP, Smulevich G (1984) J Raman Spectrosc 15(2):90–96

    Article  CAS  Google Scholar 

  48. Kolandaivel P, Praveena G, Selvarengan P (2005) J Chem Sci 117(5):591–598

    CAS  Google Scholar 

Download references

Acknowledgements

D. Glossman-Mitnik is a CONACyT and CIMAV researcher. Alejandra Favila and Marco Gallo gratefully acknowledge doctoral and postdoctoral fellowships from the National Science and Technology Council in Mexico (CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Glossman-Mitnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favila, A., Gallo, M. & Glossman-Mitnik, D. CHIH-DFT determination of the molecular structure infrared spectra, UV spectra and chemical reactivity of three antitubercular compounds: Rifampicin, Isoniazid and Pyrazinamide. J Mol Model 13, 505–518 (2007). https://doi.org/10.1007/s00894-007-0170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0170-2

Keywords

Navigation