Skip to main content
Log in

Ab initio and DFT investigation of electrophilic addition reaction of bromine to endo,endo-tetracyclo[4.2.1.13,6.02,7]dodeca-4,9-diene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Full geometric optimization of endo,endo-tetracyclo[4.2.1.13,6.02,7]dodeca-4,9-diene (TTDD) has been carried out by ab initio and DFT/B3LYP methods and the structure of the molecule investigated. The double bonds of TTDD molecule are endo pyramidalized. The structure of π-orbitals and their mutual interactions for TTDD molecule were investigated. The cationic intermediates and products obtained as a result of the addition reaction have been studied using the HF/6-311G(d), HF/6-311G(d,p) and B3LYP/6-311G(d) methods. The bridged bromonium cation isomerized into the more stable N- and U-type cations and the difference between the stability of these cations is small. The N- and U-type reaction products are obtained as a result of the reaction, which takes place via the cations in question. The stability of exo, exo and exo, endo isomers of N-type product are nearly the same and the formation of both isomers is feasible. The U-type product basically formed from the exo, exo-isomer. Although the U-type cation was 0.68 kcal mol−1 more stable than the N-type cation, the U-type product was 4.79 kcal mol−1 less stable than the N-type product.

The energy diagram of TTDD–Br2 system (kcal mol−1)(MP2/6-311G*//HF/6-311G*)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2

Similar content being viewed by others

References

  1. Goldstein MJ, Hoffmann R (1971) J Am Chem Soc 93:6193–6204

    Article  CAS  Google Scholar 

  2. Gleiter R, Schafer W (1990) Acc Chem Res 23:369–375

    Article  CAS  Google Scholar 

  3. Hoffmann R, Imamura A, Hehre WJ (1968) J Am Chem Soc 90:1499–1509

    Article  CAS  Google Scholar 

  4. Hoffmann R (1971) Acc Chem Res 4:1–9

    Article  CAS  Google Scholar 

  5. Grimme W, Wortmann J, Frowein D, Lex J, Chen G, Gleiter R (1998) J Chem Soc Perkin Trans 2:1893–1900

    Google Scholar 

  6. Osawa E, Aigami K, Inamoto Y (1978) Tetrahedron 34:509–515

    Article  CAS  Google Scholar 

  7. Lin CT, Wang NJ, Yeh YL, Chou TC (1995) Tetrahedron 51:2907–2928

    Article  CAS  Google Scholar 

  8. Lin CT, Wang NJ, Tseng HZ, Chou TC (1997) J Org Chem 62:4857–4861

    Article  CAS  Google Scholar 

  9. Lin CT, Hsu HC, Chou TC (1999) J Org Chem 64:7260–7264

    Article  CAS  Google Scholar 

  10. Soloway SB, Damiana AM, Sim JW, Bluestone H, Lidov RE (1960) J Am Chem Soc 82:5377–5385

    Article  CAS  Google Scholar 

  11. Franz HJ, Hobold W, Hohn R, Muller-Hagen G, Muller R, Pritzkow R, Schmidt H (1970) J Prakt Chem 320:622–634

    Article  Google Scholar 

  12. Haufe G, Kleinpeter E, Muhlstadt M, Graefe J (1978) Monatshefte f Chem 109:575–585

    Article  CAS  Google Scholar 

  13. Matturro MG, Adams RD, Wiberg KB (1981) Chem Commun 17:878–879

    Google Scholar 

  14. Uemura S, Fukuzawa S, Toshimitsu A, Masaya O (1983) J Org Chem 48:270–273

    Article  CAS  Google Scholar 

  15. Wiberg KB, Adams RD, Okarma PJ, Matturro MG, Segmıller B (1984) J Am Chem Soc 6:2200–2206

    Article  Google Scholar 

  16. Kimura M, Morossawa S (1985) J Org Chem 50:1532–1534

    Article  CAS  Google Scholar 

  17. Shea KJ, Greeley AC, Nguyen S, Beauchamp PD, Aue DH, Witzeman JS (1986) J Am Chem Soc 108:5901–5908

    Article  CAS  Google Scholar 

  18. Haufe G, Alvernhe G, Laurent A (1986) Tetrahedron Lett 4449–4452

  19. Murty BARC, Pinkos R, Spurr PR, Fessner WD, Lutz G, Fritz H, Hunkler D, Prinzbach H (1992) Chem Ber 125:1719–1739

    CAS  Google Scholar 

  20. Pinkos R, Melder JP, Weber K, Hunkler D, Prinzbach H (1993) J Am Chem Soc 115:7173–7191

    Article  CAS  Google Scholar 

  21. Herges R, Neumann H (1995) Liebigs Ann 1283–1289

  22. Robinson RE, Myers DY (1999) Tetrahedron Lett 1099–1100

  23. Günbas DD, Algı F, Hökelek T, Watson WH, Balcı M (2005) Tetrahedron 61:11177–11183

    Article  Google Scholar 

  24. Inagaki S, Fujimoto H, Fukui K (1976) J Am Chem Soc 98:4054–4061

    Article  CAS  Google Scholar 

  25. Belluci G, Chiappe C, Bianchini R, Lenoir D, Herges RJ (1995) J Am Chem Soc 117:12001–12002

    Article  Google Scholar 

  26. Herges R (1995) Angew Chem Int Ed Engl 34:51–53

    Article  CAS  Google Scholar 

  27. Ruiz E, Dennis R, Salahub R, Vela A (1996) J Phys Chem 100:12265–12276

    Article  CAS  Google Scholar 

  28. Brown RS (1997) Acc Chem Res 30:131–137

    Article  CAS  Google Scholar 

  29. Bianchini R, Chiappe C, Lenoir D, Lammeu R, Herges R, Grunenber J (1997) Angew Chem Int Ed Eng 36:1284–1287

    Article  CAS  Google Scholar 

  30. Smith WB (1998) J Org Chem 63:2661–2664

    Article  CAS  Google Scholar 

  31. Bianchini R, Chiappe C, Moro LG, Lenoir D, Lemmen P, Goldberg N (1999) Chem Eur J 5:1570–1580

    Article  CAS  Google Scholar 

  32. Chiappe C, Rubertis AD, Lemmen D, Lenoir D (2000) J Org Chem 65:1273–1279

    Article  CAS  Google Scholar 

  33. Chiappe C, Rubertis AD, Detert H, Lenoir D, Wannere C, Schleyer RP (2002) Chem Eur J 8:967–978

    Article  CAS  Google Scholar 

  34. Rathere R, Lindeman SV, Zhu CJ, Mori T, Schleyer RP, Kochi JK (2002) J Org Chem 67:5106–5116

    Article  Google Scholar 

  35. Lenoir D, Chiappe C (2003) Chem Eur J 9:1037–1044

    Article  Google Scholar 

  36. Chiappe C, Detert H, Lenoir D, Pamelli CS, Ruasse MF (2003) J Am Chem Soc 125:2864–2865

    Article  CAS  Google Scholar 

  37. Abbasoglu R (2004) J Mol Struct (Theochem) 686:1–5 and references therein

    Article  CAS  Google Scholar 

  38. Abbasoglu R, Yilmaz S, Gök Y (2005) Indian J Chem 44A:221–226

    CAS  Google Scholar 

  39. Abbasoglu R, Yilmaz S (2006) J Mol Model 12:290–296

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  41. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  42. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  43. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  44. Krishnan R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244–4249

    Article  CAS  Google Scholar 

  45. Borden WT (1989) Chem Rev 89:1095–1109

    Article  CAS  Google Scholar 

  46. Ermer O, Bell P, Mason SA (1989) Angew Chem Int Ed Engl 28:1239–1241

    Article  Google Scholar 

  47. Osawa E, Aigami K, Inamoto Y (1977) J Org Chem 42:2622–2626

    Article  Google Scholar 

  48. Watson WH (1983) Stereochemistry and reactivity of systems containing π electrons. Verlag Chemie International, Deerfield beach, Florida

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rza Abbasoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasoglu, R. Ab initio and DFT investigation of electrophilic addition reaction of bromine to endo,endo-tetracyclo[4.2.1.13,6.02,7]dodeca-4,9-diene. J Mol Model 13, 425–430 (2007). https://doi.org/10.1007/s00894-006-0161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-006-0161-8

Keywords

Navigation