Skip to main content
Log in

Structure and stability of neutral polyoxometalate cages: (Mo2O6) m (m=1–13)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structure and stability of neutral polyoxometalate cages (Mo2O6) m (m=1–13) have been computed systematically. These neutral cages can be viewed topologically as polyhedra containing triangles (f 3) and squares (f 4). The relative stability of these polyhedra is associated with the location and separation of the f 3. The initial stable isomers were preselected by the number of shared triangle edges (N 33), and the predicted stability was validated further at the GGA-PW91/DND level of density function theory with the fine quality of mesh size. For large clusters, the square neighbor signature (P 4444), which is similar to the hexagon neighbor rule for fullerene, becomes more applicable. The calculated disproportionation energies indicate that Mo6O18 (O h, Lindqvist), Mo12O36 (O h, α Keggin), Mo18O54 (D 3h, Wells–Dawson) and Mo24O72 (O h) cages have enhanced stability.

Mo6O18 (O h), Mo12O36 (O h), Mo18O54 (D 3h) and Mo24O72 (O h) are the most stable neutral polyoxometalate cages on the basis of the structural and energetic criteria. They can therefore be considered as the inorganic fullerenes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Because each bridged-oxygen linked by two metal atoms, so in fact each pyramid reduced to one {MO3} unit in average

References

  1. (a) Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, Berlin Heidelberg New York; (b) Pope MT, Müller A (1991) Angew Chem Int Ed Engl 30:34–48

    Google Scholar 

  2. Pope MT, Müller A (1994) Polyoxometalates: from platonic solids to anti-retroviral activity. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  3. Hill CL, Weeks MS, Schinazi RF (1990) J Med Chem 22:2767–2772

    Article  Google Scholar 

  4. (a) Hill CL (1998) Chem Rev 98:1–390 (Special issue on polyoxometalates); (b) Chen YG, Gong J, Qu LY (2004) Coord Chem Rev 248:245–260

    Article  CAS  Google Scholar 

  5. (a) Gouzerh P, Jeannin Y, Proust A, Robert F (1989) Angew Chem Int Ed Engl 28:1363–1364; (b) Lindqvist I (1952) Ark Kemi 5:247–250

    Article  Google Scholar 

  6. (a) Fuchs J, Hartl H, Schiller W, Gerlach U (1976) Acta Crystallogr B32:248; (b) Chemseddine A, Sanchez C, Livage J, Launay JP, Fournier M (1984) Inorg Chem 23:2609–2613; (c) Duncan DC, Hill CL (1996) Inorg Chem 35:5828–5835

    Google Scholar 

  7. Keggin JF (1933) Nature 131:908–909

    Article  CAS  Google Scholar 

  8. (a) Dawson B (1953) Acta Crystallogr 6:113–126; (b) D’Amour H (1976) Acta Crystallogr C 32:729–740

    Article  CAS  Google Scholar 

  9. Müller A (1991) Nature 352:115–115

    Article  Google Scholar 

  10. Day VW, Klemperer WG (1985) Science 228:533–541

    Article  CAS  Google Scholar 

  11. (a) López X, Maestre JM, Bo C, Poblet JM (2001) J Am Chem Soc 123:9571–9576; (b) Maestre JM, López X, Bo C, Poblet JM, Casaò-Pastor N (2001) J Am Chem Soc 123:3749–3758; (c) Maestre JM, López X, Poblet JM (2002) Inorg Chem 41:1883–1888; (d) Poblet JM, López X, Bo C (2003) Chem Soc Rev 32:297–308; (f) Rohmer MM, Bénard M, Blaudeau JP, Maestre JM, Poblet JM (1998) Coord Chem Rev 178:1019–1049

    Article  CAS  Google Scholar 

  12. (a) López X, Bo C, Poblet JM (2002) J Am Chem Soc 124:12574–12582; (b) López X, Bo C, Poblet JM (2003) Inorg Chem 42:2634–2638

    Article  CAS  Google Scholar 

  13. (a) Nomiya K, Miwa M (1984) Polyhedron 3:341–346; (b) Nomiya K, Miwa M (1984) Polyhedron 4:89–95; (c) Nomiya K, Miwa M (1985) Polyhedron 4:675–679; (d) Nomiya K, Miwa M (1985) Polyhedron 4:1407–1412; (e) Nomiya K (1987) Polyhedron 6:309–314

    Article  CAS  Google Scholar 

  14. Bridgeman AJ, Cavigliasso G (2003) J Phys Chem A 107:6613–6621

    Article  CAS  Google Scholar 

  15. (a) King RB (2001) J Chem Inf Comput Sci 41:517–526; (b) King RB (1992) J Chem Inf Comput Sci 32:42–47; (c) King RB (1991) Inorg Chem 30:4437–4440

    Article  CAS  Google Scholar 

  16. Sambrano JR, Andres J, Beltran A, Sensato F, Longo E (1998) Chem Phys Lett 287:620–626

    Article  CAS  Google Scholar 

  17. Baker LCW (1961) Advances in the chemistry of coordination compounds. Macmillan, New York, p 604

    Google Scholar 

  18. Dividson ER (2000) Chem Rev 100:351–818 (special issue on computational transition metal chemistry)

    Article  CAS  Google Scholar 

  19. Zhang FQ, Wu HS, Cao DB, Zhang XM, Li YW, Jiao H (2005) J Mol Struct Theochem 755:119–126

    Article  CAS  Google Scholar 

  20. Fowler PW, Heine T, Mitchell D, Schmidt R, Seifert G (1996) J Chem Soc Faraday Trans 92:2197–2201

    Article  CAS  Google Scholar 

  21. (a) Kroto HW (1987) Nature (Lond) 329:529–531; (b) Schmalz TG, Seitz WA, Klein DJ, Hite GE (1988) J Am Chem Soc 110:1113–1127

    Article  CAS  Google Scholar 

  22. (a) Delley B (1990) J Chem Phys 92:508–517; (b) Delley B (2000) J Chem Phys 113:7756–7764 (DMol3 is available as part of Materials Studio.)

    Article  CAS  Google Scholar 

  23. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  24. Wang Y, Perdew JP (1991) Phys Rev B 44:13298–13307

    Article  Google Scholar 

  25. Zhang FQ, Wu HS, Qin XF, Li YW, Jiao, H (2005) J Mol Struct Theochem 755:113–117

    Article  CAS  Google Scholar 

  26. Weinstock IA, Cowan JJ, Barbuzzi EMG, Zeng H, Hill CL (1999) J Am Chem Soc 121:4608–4617

    Article  CAS  Google Scholar 

  27. López X, Poblet JM (2004) Inorg Chem 43:6863–6865

    Article  CAS  Google Scholar 

  28. Pope MT (1972) Inorg Chem 11:1973–1974

    Article  CAS  Google Scholar 

  29. (a) Friedrichs OD, Dress AWM, Hudson DH, Klinowski J, Mackay AL (1999) Nature 400:644–647; (b) Friedrichs OD, Dress AWM, Müller A, Pope MT (1993) Mol Eng 3:9–28

    Article  CAS  Google Scholar 

  30. (a) Coxeter HSM (1961) Introduction to geometry. Wiley, New York; (b) Cerari M, Cucinella S (1987) The chemistry of inorganic homo and heterocycles. In: Haiduc I, Sowerby DB (eds) Academic, New York, pp 167–190

    Google Scholar 

  31. Brinkman G, McKay B (2001) Plantri and fullgen. http://www.mathematik.uni-bielefeld.de/~senkel/CAGE/contents.html

  32. Manolopoulos DE, May JC, Down SE (1991) Chem Phys Lett 181:105–111

    Article  CAS  Google Scholar 

  33. (a) Bridgeman AJ (2004) Chem Eur J 10:2935–2941; (b) Bridgeman AJ, Cavigliasso G (2003) J Phys Chem A 107:6613–6621; (c) Bridgeman AJ (2003) Chem Phys 287:55–69; (d) Bridgeman AJ, Cavigliasso G (2002) Inorg Chem 41:1761–1770; (e) Bridgeman AJ, Cavigliasso G (2002) Chem Phys 279:143–159; (f) Bridgeman AJ, Cavigliasso G (2002) Inorg Chem 41:3500–3507; (g) Bridgeman AJ Cavigliasso G (2002) J Chem Soc Dalton Trans 2244–2249

    Article  CAS  Google Scholar 

  34. Guo YR, Pan QJ, Wei YD, Li ZH, Li X (2004) J Mol Struct Theochem 676:55–64

    Article  CAS  Google Scholar 

  35. Wu HS, Zhang FQ, Xu XH, Zhang CJ, Jiao H (2003) J Phys Chem A 107:204–209

    Article  CAS  Google Scholar 

  36. Seifert G, Fowler PW, Mitchell D, Porezag D, Frauenheim T (1997) Chem Phys Lett 268:352–358

    Article  CAS  Google Scholar 

  37. Zurek E, Woo TK, Ziegler T (2001) Inorg Chem 40:361–370

    Article  CAS  Google Scholar 

  38. Lloyd LD, Johnston RL (1998) Chem Phys 236:107–121

    Article  CAS  Google Scholar 

  39. Schleyer PvR, Najafian K, Mebel AM (1998) Inorg Chem 37:6765–6772; see also Schleyer PvR, Najafian K (1998) Inorg Chem 37:3454–3470

    Article  CAS  Google Scholar 

  40. Chen Q, Hill CL (1996) Inorg Chem 35:2403–2405

    Article  CAS  Google Scholar 

  41. (a) Raghavachari K (1992) Chem Phys Lett 190:397–400; (b) Achiba Y, Fowler PW, Mitchell D, Zerbetto F (1998) J Phys Chem A 102:6835–6841

    Article  CAS  Google Scholar 

  42. Prinzbach H, Weller A, Landenberger P, Wahl F, Worth J, Scott LT, Gelmont M, Olevano D, Issendorff BV (2000) Nature 407:60–63

    Article  CAS  Google Scholar 

  43. (a) Cioslowski J, Rao N, Moncrieff D (2000) J Am Chem Soc 122:8265–8270; (b) Zhao X, Slanina Z, Goto H (2004) J Phys Chem A 108:4479–4484; (c) Wu HS, Xu XH, Jiao H (2004) J Phys Chem A 108:3813–3816

    Article  CAS  Google Scholar 

  44. (a) Strout DL (2004) Chem Phys Lett 383:95–98; (b) Strout DL (2001) J Phys Chem A 105:261–263

    Article  CAS  Google Scholar 

  45. (a) Alizadeh MH, Harmalker SP, Jeannin Y, Martin-Frère J, Pope MT (1985) J Am Chem Soc 107:2662–2669; (b) Dickman MH, Gama GJ, Kim KC, Pope MT (1996) J Clust Sci 7:567–583

    Article  CAS  Google Scholar 

  46. Müller A, Kögerler P, Dress AWM (2001) Coord Chem Rev 222:193–218

    Article  Google Scholar 

  47. Müller A, Das SK, Kögerler P, Bögge H, Schmidtmann M, Trautwein AX, Schünemann V, Krickemeyer E, Preetz W (2000) Angew Chem Int Ed Engl 39:3414–3417

    Google Scholar 

  48. Müller A, Krickemeyer E, Bögge H, Schmidtmann M, Preetz W, Peters F (1998) Angew Chem Int Ed Engl 37:3359–3363

    Article  Google Scholar 

  49. Müller A, Koop M, Bögge H, Schmidtmann M, Peters F (1999) Chem Commun 1885–1886

  50. (a) Müller A, Reuter H, Dillinger S (1995) Angew Chem Int Ed Engl 34:2328–2361; (b) Müller A, Rohlfing R, Krickemeyer E, Bögge H (1993) Angew Chem Int Ed Engl 32:909–912; (c) Müller A, Krickemeyer E, Penk M, Rohlfing R, Armatage A, Bögge H (1991) Angew Chem Int Ed Engl 30:1674–1677

    Article  Google Scholar 

  51. (a) Dahlstrom P, Zubie J, Neaves B, Dilworth JR (1982) Cryst Struct Commun 11:463–469; (b) Garner CD, Giwkaderm NC, Mabbs FE, McPhail AT, Miller RW, Onan KD (1978) J Chem Soc Dalton Trans 1582–1589

    CAS  Google Scholar 

  52. Bi LH, Wang EB, Xu L, Huang RD (2000) Inorg Chim Acta 305:163–171

    Article  CAS  Google Scholar 

  53. Neier R, Trojanoski C, Mattes R (1995) J Chem Soc Dalton Trans 2521–2528

Download references

Acknowledgements

The work was supported by Chinese Academy of Sciences and the National Natural Science Foundation China (20471034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Shun Wu.

Additional information

Dedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, FQ., Wu, HS., Xu, YY. et al. Structure and stability of neutral polyoxometalate cages: (Mo2O6) m (m=1–13). J Mol Model 12, 551–558 (2006). https://doi.org/10.1007/s00894-006-0108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-006-0108-0

Keywords

Navigation