Skip to main content
Log in

Methods for array tomography with correlative light and electron microscopy

  • Review
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

The three-dimensional ultra-structure is the comprehensive structure that cannot be observed from a two-dimensional electron micrograph. Array tomography is one method for three-dimensional electron microscopy. In this method, to obtain consecutive cross sections of tissue, connected consecutive sections of a resin block are mounted on a flat substrate, and these are observed with scanning electron microscopy. Although array tomography requires some bothersome manual procedures to prepare specimens, a recent study has introduced some techniques to ease specimen preparation. In addition, array tomography has some advantages compared with other three-dimensional electron microscopy techniques. For example, sections on the substrate are stored semi-eternally, so they can be observed at different magnifications. Furthermore, various staining methods, including post-embedding immunocytochemistry, can be adopted. In the present review, the preparation of specimens for array tomography, including ribbon collection and the staining method, and the adaptability for correlative light and electron microscopy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340

    Article  PubMed  CAS  Google Scholar 

  2. Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55:25–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Hartenstein V, Douglas RJ (2012) TrakEM2 software for neural circuit reconstruction. PLoS One 7:e38011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Saalfeld S, Fetter R, Cardona A, Tomancak P (2012) Elastic volume reconstruction from series of ultra-thin microscopy sections. Nat Methods 9:717–720

    Article  PubMed  CAS  Google Scholar 

  7. Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188

    Article  PubMed  CAS  Google Scholar 

  8. Vihinen H, Belevich I, Jokitalo E (2013) Three dimensional electron microscopy of cellular organ elles by serial block face SEM and ET. Microsc anal 27:7–10

    Google Scholar 

  9. Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF (2012) Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci USA 109:6136–6141

    Article  PubMed  Google Scholar 

  10. Wei D, Jacobs S, Modla S, Zhang S, Young CL, Cirino R, Caplan J, Czymmek K (2012) High-resolution three-dimensional reconstruction of a whole yeast cell using focused-ion beam scanning electron microscopy. Biotechniques 53:41–48

    Article  PubMed  CAS  Google Scholar 

  11. Hayworth KJ, Morgan JL, Schalek R, Berger DR, Hildebrand DG, Lichtman JW (2014) Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front Neural Circuits 8:68

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hayworth KJ, Kasthuri N, Schalek R, Lichtman JW (2006) Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microsc Microanal 12:86–87

    Article  Google Scholar 

  13. Terasaki M, Shemesh T, Kasthuri N, Klemm RW, Schalek R, Hayworth KJ, Hand AR, Yankova M, Huber G, Lichtman JW, Rapoport TA, Kozlov MM (2013) Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell 154:285–296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Koga D, Kusumi S, Ushiki T (2016) Three-dimensional shape of the Golgi apparatus in different cell types: serial section scanning electron microscopy of the osmium-impregnated Golgi apparatus. Microscopy (Oxf) 65:145–157

    Article  CAS  Google Scholar 

  15. Koga D, Kusumi S, Ushiki T, Watanabe T (2017) Integrative method for three-dimensional imaging of the entire Golgi apparatus by combining thiamine pyrophosphatase cytochemistry and array tomography using backscattered electron-mode scanning electron microscopy. Biomed Res 38:285–296

    Article  PubMed  Google Scholar 

  16. Blumer MJ, Gahleitner P, Narzt T, Handl C, Ruthensteiner B (2002) Ribbons of semithin sections: an advanced method with a new type of diamond knife. J Neurosci Methods 120:11–16

    Article  PubMed  Google Scholar 

  17. Horstmann H, Korber C, Satzler K, Aydin D, Kuner T (2012) Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues. PLoS One 7:e35172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Spomer W, Hofmann A, Wacker I, Ness L, Brey P, Schröder R R, Gengenbach U (2015) Advanced substrate holder and multi-axis manipulation tool for ultramicrotomyAdvanced substrate holder and multi-axis manipulation tool for ultramicrotomy. Microsc Microanal 21:1277–1278

    Article  Google Scholar 

  19. Wacker I, Spomer W, Hofmann A, Thaler M, Hillmer S, Gengenbach U, Schroder RR (2016) Hierarchical imaging: a new concept for targeted imaging of large volumes from cells to tissues. BMC Cell Biol 17:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Koike T, Kataoka Y, Maeda M, Hasebe Y, Yamaguchi Y, Suga M, Saito A, Yamada H (2017) A Device for Ribbon Collection for Array Tomography with Scanning Electron Microscopy. Acta Histochem Cytochem 50:135–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tapia JC, Kasthuri N, Hayworth KJ, Schalek R, Lichtman JW, Smith SJ, Buchanan J (2012) High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy. Nat Protoc 7:193–206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wacker I, Chockley P, Bartels C, Spomer W, Hofmann A, Gengenbach U, Singh S, Thaler M, Grabher C, Schroder RR (2015) Array tomography: characterizing FAC-sorted populations of zebrafish immune cells by their 3D ultrastructure. J Microsc 259:105–113

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shodo R, Hayatsu M, Koga D, Horii A, Ushiki T (2017) Three-dimensional reconstruction of root cells and interdental cells in the rat inner ear by serial section scanning electron microscopy. Biomed Res 38:239–248

    Article  PubMed  CAS  Google Scholar 

  24. Armstrong WE, Rubrum A, Teruyama R, Bond CT, Adelman JP (2005) Immunocytochemical localization of small-conductance, calcium-dependent potassium channels in astrocytes of the rat supraoptic nucleus. J Comp Neurol 491:175–185

    Article  PubMed  CAS  Google Scholar 

  25. Yi H, Leunissen J, Shi G, Gutekunst C, Hersch S (2001) A novel procedure for pre-embedding double immunogold-silver labeling at the ultrastructural level. J Histochem Cytochem 49:279–284

    Article  PubMed  CAS  Google Scholar 

  26. Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M, Micheva KD, Smith SJ, Kim ML, Lee VM, Hyman BT, Spires-Jones TL (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci U S A 106:4012–4017

    Article  PubMed  PubMed Central  Google Scholar 

  27. Soiza-Reilly M, Commons KG (2011) Quantitative analysis of glutamatergic innervation of the mouse dorsal raphe nucleus using array tomography. J Comp Neurol 519:3802–3814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Yamashita S (2010) The post-embedding method for immunoelectron microscopy of mammalian tissues: a standardized procedure based on heat-induced antigen retrieval. Methods Mol Biol 657:237–248

    Article  PubMed  CAS  Google Scholar 

  29. Nakai Y, Iwashita T (1976) Correlative light and electron microscopy of the frog adrenal gland cells using adjacent epon-embedded sections. Arch Histol Jpn 39:183–191

    Article  PubMed  CAS  Google Scholar 

  30. Watari N, Tsukagoshi N, Honma Y (1970) The correlative light and electron microscopy of the islets of Langerhans in some lower vertebrates. Arch Histol Jpn 31:371–392

    Article  PubMed  CAS  Google Scholar 

  31. de Boer P, Hoogenboom JP, Giepmans BN (2015) Correlated light and electron microscopy: ultrastructure lights up! Nat Methods 12:503–513

    Article  PubMed  CAS  Google Scholar 

  32. Kim D, Deerinck TJ, Sigal YM, Babcock HP, Ellisman MH, Zhuang X (2015) Correlative stochastic optical reconstruction microscopy and electron microscopy. PLoS One 10:e0124581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Koga D, Kusumi S, Bochimoto H, Watanabe T, Ushiki T (2015) Correlative light and scanning electron microscopy for observing the three-dimensional ultrastructure of membranous cell organelles in relation to their molecular components. J Histochem Cytochem 63:968–979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Saitoh S, Ohno N, Saitoh Y, Terada N, Shimo S, Aida K, Fujii H, Kobayashi T, Ohno S (2018) improved serial sectioning techniques for correlative light-electron microscopy mapping of human langerhans islets. Acta Histochem Cytochem 51:9–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sengle G, Tufa SF, Sakai LY, Zulliger MA, Keene DR (2013) A correlative method for imaging identical regions of samples by micro-CT, light microscopy, and electron microscopy: imaging adipose tissue in a model system. J Histochem Cytochem 61:263–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Collman F, Buchanan J, Phend KD, Micheva KD, Weinberg RJ, Smith SJ (2015) Mapping synapses by conjugate light-electron array tomography. J Neurosci 35:5792–5807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Micheva KD, Busse B, Weiler NC, O’Rourke N, Smith SJ (2010) Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68:639–653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Oberti D, Kirschmann MA, Hahnloser RH (2010) Correlative microscopy of densely labeled projection neurons using neural tracers. Front Neuroanat 4:24

    PubMed  PubMed Central  Google Scholar 

  39. Oberti D, Kirschmann MA, Hahnloser RH (2011) Projection neuron circuits resolved using correlative array tomography. Front Neurosci 5:50

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koga D, Kusumi S, Shodo R, Dan Y, Ushiki T (2015) High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy. Microscopy (Oxf) 64:387–394

    Article  CAS  Google Scholar 

  41. Beckwith MS, Beckwith KS, Sikorski P, Skogaker NT, Flo TH, Halaas O (2015) Seeing a mycobacterium-infected cell in nanoscale 3D: correlative imaging by light microscopy and FIB/SEM tomography. PLoS One 10:e0134644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Booth DG, Beckett AJ, Molina O, Samejima I, Masumoto H, Kouprina N, Larionov V, Prior IA, Earnshaw WC (2016) 3D-CLEM Reveals that a Major Portion of Mitotic Chromosomes Is Not Chromatin. Mol Cell 64:790–802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Shtengel G, Wang Y, Zhang Z, Goh WI, Hess HF, Kanchanawong P (2014) Imaging cellular ultrastructure by PALM, iPALM, and correlative iPALM-EM. Methods Cell Biol 123:273–294

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

This study was supported in part by Grants-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science [16k08480 to H.Y.], The Science Research Promotion Fund from the Proportion and Mutual Aid Corporation for Private Schools of Japan [to T.K.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Koike.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koike, T., Yamada, H. Methods for array tomography with correlative light and electron microscopy. Med Mol Morphol 52, 8–14 (2019). https://doi.org/10.1007/s00795-018-0194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-018-0194-y

Keywords

Navigation