Skip to main content

Advertisement

Log in

Periodontal regeneration induced by porous alpha-tricalcium phosphate with immobilized basic fibroblast growth factor in a canine model of 2-wall periodontal defects

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

We evaluated the effect of porous alpha-tricalcium phosphate (α-TCP) with immobilized basic fibroblast growth factor (bFGF) on periodontal regeneration in a canine model of 2-wall periodontal defects. Identical bone defects were made in the canine mandible; six defects in each animal were filled with porous α-TCP with bFGF bound via heparin (bFGF group), and the remaining defects were filled with unmodified porous α-TCP (control group). Micro-computed tomography and histological evaluation were performed at 2, 4, and 8 weeks post-implantation. The bone mineral content of the bFGF group was higher than that of the control group at 2 and 4 weeks (p < 0.05). Histological evaluation at 2 weeks post-implantation revealed degradation of the porous α-TCP, and bone had formed on the surface of α-TCP particles in the bFGF group. Some of these collagen fibers connected the newly formed cementum with the alveolar bone, revealing the formation of new periodontal ligaments with Sharpey’s fibers. At 8 weeks, continuous cortical bone with a Haversian structure covered the top of the bone defects in the bFGF group. These findings indicate that porous α-TCP with immobilized bFGF could promote periodontal regeneration at the early regeneration phase in a canine model of 2-wall periodontal defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Matsuno T, Nakamura T, Kuremoto K, Notazawa S, Nakahara T, Hashimoto Y, Satoh T, Shimizu Y (2006) Development of beta-tricalcium phosphate/collagen sponge composite for bone regeneration. Dent Mater J 25:138–144

    Article  CAS  PubMed  Google Scholar 

  2. Omata K, Matsuno T, Asano K, Hashimoto Y, Tabata Y, Satoh T (2014) Enhanced bone regeneration by gelatin-β-tricalcium phosphate composites enabling controlled release of bFGF. J Tissue Eng Regen Med 8:604–611

    Article  CAS  PubMed  Google Scholar 

  3. Baba S, Inoue T, Hashimoto Y, Kimura D, Ueda M, Sakai K, Matsumoto N, Hiwa C, Adachi T, Hojo M (2010) Effectiveness of scaffolds with pre-seeded mesenchymal stem cells in bone regeneration—assessment of osteogenic ability of scaffolds implanted under the periosteum of the cranial bone of rats. Dent Mater J 29:673–681

    Article  PubMed  Google Scholar 

  4. Hammarström L, Heijl L, Gestrelius S (1997) Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. J Clin Periodontol 24:669–677

    Article  PubMed  Google Scholar 

  5. Sakai K, Hashimoto Y, Baba S, Nishiura A, Matsumoto N (2011) Effects on bone regeneration when collagen model polypeptides are combined with various sizes of alpha-tricalcium phosphate particles. Dent Mater J 30:913–922

    Article  CAS  PubMed  Google Scholar 

  6. Kitamura M, Ohtsuki C, Iwasaki H, Ogata SI, Tanihara M, Miyazaki T (2004) The controlled resorption of porous α-tricalcium phosphate using a hydroxypropylcellulose coating. J Mater Sci Mater Med 15:1153–1158

    Article  CAS  PubMed  Google Scholar 

  7. Tabata Y, Yamada K, Miyamoto S, Nagata I, Kikuchi H, Aoyama I, Tamura M, Ikada Y (1998) Bone regeneration by basic fibroblast growth factor complexed with biodegradable hydrogels. Biomaterials 19:807–815

    Article  CAS  PubMed  Google Scholar 

  8. Kakinoki S, Sakai Y, Fujisato T, Yamaoka T (2015) Accelerated tissue integration into porous materials by immobilizing basic fibroblast growth factor using a biologically safe three-step reaction. J Biomed Mater Res A 103:3790–3797

    Article  CAS  PubMed  Google Scholar 

  9. Kobayashi N, Hashimoto Y, Otaka A, Yamaoka T, Morita S (2016) Porous alpha-tricalcium phosphate with immobilized basic fibroblast growth factor enhances bone regeneration in a canine mandibular bone defect model. Materials 9:853

    Article  PubMed Central  Google Scholar 

  10. Saito E, Saito A, Kato H, Shibukawa Y, Inoue S, Yuge F, Nakajima T, Takahashi T, Kawanami M (2016) A novel regenerative technique combining bone morphogenetic protein-2 with fibroblast growth factor-2 for circumferential defects in dog incisors. J Periodontol 87:1067–1074

    Article  PubMed  Google Scholar 

  11. Sigurdsson TJ, Nygaard L, Tatakis DN, Fu E, Turek TJ, Jin L, Wozney JM, Wikesjö UME (1996) Periodontal repair in dogs: evaluation of rhBMP-2 carriers. Int J Periodontics Restor Dent 16:525–537

    Google Scholar 

  12. Sorensen RG, Wikesjö UME, Kinoshita A, Wozney JM (2004) Periodontal repair in dogs: evaluation of a bioresorbable calcium phosphate cement (Ceredex™) as a carrier for rhBMP-2. J Clin Periodontol 31:796–804

    Article  CAS  PubMed  Google Scholar 

  13. Wikesjö UME, Guglielmoni P, Promsudthi A, Cho KS, Trombelli L, Selvig KA, Jin L, Wozney JM (1999) Periodontal repair in dogs: effect of rhBMP-2 concentration on regeneration of alveolar bone and periodontal attachment. J Clin Periodontol 26:392–400

    Article  PubMed  Google Scholar 

  14. Young C, Ladd P, Browning C, Thompson A, Bonomo J, Shockley K, Hart C (2009) Release, biological potency, and biochemical integrity of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) combined with Augment TM bone graft or GEM 21S beta-tricalcium phosphate (β-TCP). J Control Release 140:250–255

    Article  CAS  PubMed  Google Scholar 

  15. Kotev-Emeth S, Savion N, Pri-chen S, Pitaru S (2000) Effect of maturation on the osteogenic response of cultured stromal bone marrow cells to basic fibroblast growth factor. Bone 27:777–783

    Article  CAS  PubMed  Google Scholar 

  16. Moscatelli D, Joseph-Silverstein J, Presta M, Rifkin DB (1988) Multiple forms of an angiogenesis factor: basic fibroblast growth factor. Biochimie 70:83–87

    Article  CAS  PubMed  Google Scholar 

  17. Kitamura M, Nakashima K, Kowashi Y, Fujii T, Shimauchi H, Sasano T, Furuuchi T, Fukuda M, Noguchi T, Shibutani T (2008) Periodontal tissue regeneration using fibroblast growth factor-2: randomized controlled phase II clinical trial. PLoS ONE 3:e2611

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carrel JP, Wiskott A, Scherrer S, Durual S (2016) Large bone vertical augmentation using a three-dimensional printed TCP/HA bone graft: a pilot study in dog mandible. Clin Implant Dent Relat Res 18(6):1183–1192

    Article  PubMed  Google Scholar 

  19. Lee JS, Wikesjö UM, Jung UW, Choi SH, Pippig S, Siedler M, Kim CK (2010) Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a β-tricalcium phosphate carrier into one-wall intrabony defects in dogs. J Clin Periodontol 37:382–389

    Article  CAS  PubMed  Google Scholar 

  20. Matsuura T, Akizuki T, Hoshi S, Ikawa T, Kinoshita A, Sunaga M, Oda S, Kuboki Y, Izumi Y (2015) Effect of a tunnel-structured β-tricalcium phosphate graft material on periodontal regeneration: a pilot study in a canine one-wall intrabony defect model. J Periodontal Res 50:347–355

    Article  CAS  PubMed  Google Scholar 

  21. Anzai J, Nagayasu-Tanaka T, Terashima A, Asano T, Yamada S, Nozaki T, Kitamura M, Murakami S (2016) Long-term observation of regenerated periodontium induced by FGF-2 in the Beagle dog 2-wall periodontal defect model. PLoS ONE 11:e0158485

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sato Y, Kikuchi M, Ohata N, Tamura M, Kuboki Y (2004) Enhanced cementum formation in experimentally induced cementum defects of the root surface with the application of recombinant basic fibroblast growth factor in collagen gel in vivo. J Periodontol 75:243–248

    Article  CAS  PubMed  Google Scholar 

  23. Shujaa Addin A, Akizuki T, Hoshi S, Matsuura T, Ikawa T, Fukuba S, Matsui M, Tabata Y, Izumi Y (2017) Biodegradable gelatin/beta-tricalcium phosphate sponges incorporating recombinant human fibroblast growth factor-2 for treatment of recession-type defects: a split-mouth study in dogs. J Periodontal Res 52:863–871

    Article  CAS  PubMed  Google Scholar 

  24. Tobita K, Ohnishi I, Matsumoto T, Ohashi S, Bessho M, Kaneko M, Matsuyama J, Nakamura K (2011) Effect of low-intensity pulsed ultrasound stimulation on callus remodelling in a gap-healing model Evaluation by bone morphometry using three-dimensional quantitative micro-CT. J Bone Joint Surg 93:525–530

    Article  CAS  Google Scholar 

  25. Pri-Chen S, Pitaru S, Lokiec F, Savion N (1998) Basic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone-treated human bone marrow-derived bone-like cells in culture. Bone 23:111–117

    Article  CAS  PubMed  Google Scholar 

  26. Shimizu A, Tajima S, Tobita M, Tanaka R, Tabata Y, Mizuno H (2014) Effect of control-released basic fibroblast growth factor incorporated in β-tricalcium phosphate for murine cranial model. Plast Reconstr Surg 2:e126

    Google Scholar 

  27. Ito T, Hashimoto Y, Baba S, Iseki T, Morita S (2015) Bone regeneration with a collagen model polypeptides/α-tricalcium phosphate sponge in a canine tibia defect model. Implant Dent 24:197–203

    PubMed  Google Scholar 

  28. Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod 19:615–621

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by a MEXT/Japan Society for the Promotion of Science KAKENHI grant (No. 25463062), by the Japan Agency for Medical Research and Development (No. 17ek0109138h0003), and by Osaka Dental University Research Funds (17-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiya Hashimoto.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuse, K., Hashimoto, Y., Kakinoki, S. et al. Periodontal regeneration induced by porous alpha-tricalcium phosphate with immobilized basic fibroblast growth factor in a canine model of 2-wall periodontal defects. Med Mol Morphol 51, 48–56 (2018). https://doi.org/10.1007/s00795-017-0172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-017-0172-9

Keywords

Navigation