Skip to main content
Log in

Development of a pyrE-based selective system for Thermotoga sp. strain RQ7

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

To fully unlock the biotechnological potentials of Thermotoga species, this study aimed to expand the genetic toolbox of Thermotoga by developing a new selective system. The developed system was composed of two components: a recipient strain bearing a deletion in its orotate phosphoribosyltransferase gene pyrE and a shuttle vector expressing a heterologous pyrE as the selectable marker. A spontaneous uracil auxotroph, T. sp. strain RQ7-15, was isolated at 70 °C with 2 mg/ml 5-fluoroorotic acid. The mutant carried a 112 bp deletion in pyrE and was a suitable recipient strain. To avoid homologous recombination, the pyrE gene from another thermophilic bacterium Caldicellulosiruptor saccharolyticus was used as the selectable marker. The gene was cloned into two Thermotoga-E. coli shuttle vectors, controlled by different promoters: the promoter of Thermus S-layer protein (P slpA ) in pDH25 and the promoter of the pyrimidine synthesis operon of T. sp. strain RQ7 (P RQ7.pyr ) in pDH28. After being introduced into the mutant strain RQ7-15 through natural transformation, both vectors allowed the host to thrive in a minimal medium. Single colonies of transformants were isolated and confirmed by polymerase chain reactions and restriction digestions. In summary, a pyrE-based selective system has been established in T. sp. strain RQ7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

5-FOA:

5-Fluoroorotic acid

bp:

Base pairs

CFU:

Colony forming unit

DNA:

Deoxyribonucleic acid

Kan:

Kanamycin

ORF:

Open reading frame

ori :

Origin of replication

PCR:

Polymerase chain reaction

RQ7:

Thermotoga sp. strain RQ7

RQ7-15:

T. sp. strain RQ7-15, a uracil auxotroph of T. sp. strain RQ7

UMP:

Uridine monophosphate

References

  • Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl 1):5–16

    Article  CAS  PubMed  Google Scholar 

  • Bitan-Banin G, Ortenberg R, Mevarech M (2003) Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene. J Bacteriol 185(3):772–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen genet MGG 197(2):345–346

    Article  CAS  PubMed  Google Scholar 

  • Boeke JD, Trueheart J, Natsoulis G, Fink GR (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154:164–175

    Article  CAS  PubMed  Google Scholar 

  • Christopherson RI, Finch LR (1978) Response of the pyrimidine pathway of Escherichia coli K 12 to exogenous adenine and uracil. Eur J Biochem FEBS 90(2):347–358

    Article  CAS  Google Scholar 

  • Cottarel G, Beach D, Deuschle U (1993) Two new multi-purpose multicopy Schizosaccharomyces pombe shuttle vectors, pSP1 and pSP2. Curr Genet 23(5–6):547–548

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Zhu H, Chen Z, Liang YX, She Q (2009) Unmarked gene deletion and host-vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. Extrem Life Under Extreme Cond 13(4):735–746

    Article  CAS  Google Scholar 

  • Donovan WP, Kushner SR (1983) Purification and characterization of orotidine-5′-phosphate decarboxylase from Escherichia coli K-12. J Bacteriol 156(2):620–624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han D, Norris SM, Xu Z (2012) Construction and transformation of a Thermotoga-E. coli shuttle vector. BMC Biotechnol 12:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han D, Xu H, Puranik R, Xu Z (2014) Natural transformation of Thermotoga sp. strain RQ7. BMC Biotechnol 14:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144(4):324–333

    Article  CAS  Google Scholar 

  • Lasa I, Caston JR, Fernandez-Herrero LA, de Pedro MA, Berenguer J (1992) Insertional mutagenesis in the extreme thermophilic eubacteria Thermus thermophilus HB8. Mol Microbiol 6(11):1555–1564

    Article  CAS  PubMed  Google Scholar 

  • Lucas S, Toffin L, Zivanovic Y, Charlier D, Moussard H, Forterre P, Prieur D, Erauso G (2002) Construction of a shuttle vector for, and spheroplast transformation of, the hyperthermophilic archaeon Pyrococcus abyssi. Appl Environ Microbiol 68(11):5528–5536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peck RF, DasSarma S, Krebs MP (2000) Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol Microbiol 35(3):667–676

    Article  CAS  PubMed  Google Scholar 

  • Redder P, Linder P (2012) New range of vectors with a stringent 5-fluoroorotic acid-based counterselection system for generating mutants by allelic replacement in Staphylococcus aureus. Appl Environ Microbiol 78(11):3846–3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2006) The condensed protocols from molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sato T, Fukui T, Atomi H, Imanaka T (2003) Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185(1):210–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimosaka M, Fukuda Y, Murata K, Kimura A (1984) Purine-mediated growth inhibition caused by a pyrE mutation in Escherichia coli K-12. J Bacteriol 160(3):1101–1104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Silar P, Thiele DJ (1991) New shuttle vectors for direct cloning in Saccharomyces cerevisiae. Gene 104(1):99–102

    Article  CAS  PubMed  Google Scholar 

  • Sissons CH, Sharrock KR, Daniel RM, Morgan HW (1987) Isolation of cellulolytic anaerobic extreme thermophiles from new zealand thermal sites. Appl Environ Microbiol 53(4):832–838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76(19):6591–6599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbough CL Jr., Kerr KH, Funderburg WR, Donahue JP, Powell FE (1987) Nucleotide sequence and characterization of the pyrF operon of Escherichia coli K12. J Biolog Chem 262(21):10239–10245

    CAS  Google Scholar 

  • Van Ooteghem SA, Jones A, Van Der Lelie D, Dong B, Mahajan D (2004) H(2) production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol Lett 26(15):1223–1232

    Article  PubMed  Google Scholar 

  • Vargas M, Noll KM (1994) Isolation of auxotrophic and antimetabolite-resistant mutants of the hyperthermophilic bacterium Thermotoga-Neapolitana. Arch Microbiol 162(5):357–361

    Article  CAS  Google Scholar 

  • Xu H, Han D, Xu Z (2015) Expression of heterologous cellulases in Thermotoga sp. strain RQ2. BioMed Res Int 2015:304523

    PubMed  PubMed Central  Google Scholar 

  • Zhou P, Szczypka MS, Young R, Thiele DJ (1994) A system for gene cloning and manipulation in the yeast Candida glabrata. Gene 142(1):135–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the BGSU Commercialization Catalyst Award and the BGSU Building Strength Award to ZX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Xu.

Additional information

Communicated by L. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Xu, Z. Development of a pyrE-based selective system for Thermotoga sp. strain RQ7. Extremophiles 21, 297–306 (2017). https://doi.org/10.1007/s00792-016-0902-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0902-2

Keywords

Navigation