Skip to main content
Log in

Pressure adaptation of 3-isopropylmalate dehydrogenase from an extremely piezophilic bacterium is attributed to a single amino acid substitution

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

3-Isopropylmalate dehydrogenase (IPMDH) from the extreme piezophile Shewanella benthica (SbIPMDH) is more pressure-tolerant than that from the atmospheric pressure-adapted Shewanella oneidensis (SoIPMDH). To understand the molecular mechanisms of this pressure tolerance, we analyzed mutated enzymes. The results indicate that only a single mutation at position 266, corresponding to Ala (SbIPMDH) and Ser (SoIPMDH), essentially affects activity under higher-pressure conditions. Structural analyses of SoIPMDH suggests that penetration of three water molecules into the cleft around Ser266 under high-pressure conditions could reduce the activity of the wild-type enzyme; however, no water molecule is observed in the Ala266 mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DHFR:

Dihydrofolate reductase

EcDHFR:

DHFR from Escherichia coli

HPPX:

High-pressure protein crystallography

IPM:

Threo-3-isopropylmalate

IPMDH:

3-isopropylmalate dehydrogenase

NAD:

Nicotinamide adenine dinucleotide

RMSD:

Root-mean-square deviation

SbIPMDH:

IPMDH from Shewanella benthica DB21MT-2

SoIPMDH:

IPMDH from Shewanella oneidensis MR-1

TtIPMDH:

IPMDH from Thermus thermophiles

References

  • Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst D66:D213–D221

    Google Scholar 

  • Akasaka K (2006) Probing conformational fluctuation of proteins by pressure perturbation. Chem Rev 106:1814–1835

    Article  CAS  PubMed  Google Scholar 

  • Aono E, Baba T, Ara T, Nishi T, Nakamichi T, Inamoto E, Toyonaga H, Hasegawa M, Takai Y, Okumura Y, Baba M, Tomita M, Kato C, Oshima T, Nakasone K, Mori H (2010) Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments. Mol BioSyst 6:1216–1226

    Article  CAS  PubMed  Google Scholar 

  • Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381

    Article  CAS  PubMed  Google Scholar 

  • Collins MA, Hummer G, Quillin ML, Matthews BW, Gluner SM (2005) Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation. Proc Natl Acad Sci USA 102:16668–16671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davydov DR, Sineva EV, Davidova NY, Bartlett DH, Halpert JR (2013) CYP261 enzymes from deep sea bacteria: a clue to conformational heterogeneity in cytochromes P450. Biotechnol Appl Biochem 60:30–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Lano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, USA. http://www.pymol.org

  • De Poorter LMI, Suzaki Y, Sato T, Tamegai H, Kato C (2004) Effects of pressure on the structure and activity of isopropylmalate dehydrogenases from deep-sea Shewanella species. Mar Biotechnol 6:S190–S194

    Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Cryst D60:2126–2132

    CAS  Google Scholar 

  • Fang J, Kato C (2010) Deep-sea piezophilic bacteria: geomicrobiology and biotechnology. In: Jain SK (ed) Geomicrobiology: biodiversity and biotechnology. Blackwell Publishing, London, pp 47–77

    Chapter  Google Scholar 

  • Gage JD, Tyler PA (1991) Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Graczer E, Lionne C, Zavodszky P, Chaloin L, Vas M (2013) Transient kinetic studies reveal isomerization steps along the kinetic pathway of Thermus thermophilus 3-isopropylmalate dehydrogenase. FEBS J 280:1764–1772

    Article  CAS  PubMed  Google Scholar 

  • Hamajima Y, Nagae T, Watanabe N, Kato-Yamada Y, Imai T, Kato C (2014) Pressure effects on the chimeric 3-isopropyl malate dehydrogenases of the deep-sea piezophilic Shewanella benthica and the atmospheric pressure adapted Shewanella oneidensis. Biosci Biotechnol Biochem 78:469–471

    Article  CAS  PubMed  Google Scholar 

  • Hirose R, Suzuki T, Moriyama H, Sato T, Yamagishi A, Oshima T, Tanaka N (2001) Crystal structures of mutants of Thermus thermophilus IPMDH adapted to low temperatures. Protein Eng 14:81–84

    Article  CAS  PubMed  Google Scholar 

  • Imada K, Sato M, Tanaka N, Katsube Y, Matsu-ura Y, Oshima T (1991) Three-dimensional structure of a highly thermo-stable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 Å resolution. J Mol Biol 222:725–738

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Ohyama S, Kovalenko A, Hirata F (2007) Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin. Protein Sci 16:1927–1933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kasahara R, Sato T, Tamegai H, Kato C (2009) Piezo-adapted 3-isopropylmalate dehydrogenase of the obligate piezophile Shewanella benthica DB21MT-2 isolated from the 11,000-m depth of the Mariana Trench. Biosci Biotechnol Biochem 73:2541–2543

    Article  CAS  PubMed  Google Scholar 

  • Kato C (2011a) Distribution of piezophiles. In: Horikoshi K, Antranikian G, Bull A, Robb F, Stetter K (eds) Extremophiles handbook. Springer, Tokyo, pp 643–655

    Chapter  Google Scholar 

  • Kato C (2011b) High pressure and prokaryotes. In: Horikoshi K, Antranikian G, Bull A, Robb F, Stetter K (eds) Extremophiles handbook. Springer, Tokyo, pp 657–668

    Chapter  Google Scholar 

  • Kato C (2012) Microbiology of piezophiles in deep-sea environments. In: Anitori RP (ed) Extremophiles: microbiology and biotechnology. Caister Academic Press, Norfolk, pp 233–263

    Google Scholar 

  • Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513

    PubMed Central  CAS  PubMed  Google Scholar 

  • Katrusiak A, Dauter Z (1996) Compressibility of lysozyme protein crystals by X-ray diffraction. Acta Cryst D52:607–608

    CAS  Google Scholar 

  • Li H, Akasaka K (2006) Conformational fluctuations of proteins revealed by variable pressure NMR. Biochim Biophys Acta 1764:331–345

    Article  CAS  PubMed  Google Scholar 

  • Murakami C, Ohmae E, Tate S, Gekko K, Nakasone K, Kato C (2011) Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments. Extremophiles 15:165–175

    Article  CAS  PubMed  Google Scholar 

  • Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Cryst D67:355–367

    Google Scholar 

  • Nagae T, Kato C, Watanabe N (2012a) Structural analysis of 3-isopropylmalate dehydrogenase from the obligate piezophile Shewanella benthica DB21MT-2 and the nonpiezophile Shewanella oneidensis MR-1. Acta Cryst F68:265–268

    Google Scholar 

  • Nagae T, Kawamura T, Chavas LMG, Niwa K, Hasegawa M, Kato C, Watanabe N (2012b) High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase. Acta Cryst D68:300–309

    Google Scholar 

  • Ohkuri T, Yamagishi A (2007) The effects of mutations at position 253 on the thermostability of the Bacillus subtilis 3-isopropylmalate dehydrogenase subunit interface. J Biochem 141:791–797

    Article  CAS  PubMed  Google Scholar 

  • Ohmae E, Kubota K, Nakasone K, Kato C, Gekko K (2004) Pressure-dependent activity of dihydrofolate reductase from a deep-sea bacterium Shewanella violacea strain DSS12. Chem Lett 33:798–799

    Article  CAS  Google Scholar 

  • Ohmae E, Murakami C, Tate S, Gekko K, Hata K, Akasaka K, Kato C (2012) Pressure dependence of activity and stability of dihydrofolate reductase of the deep-sea bacterium Moritella profunda and Escherichia coli. Biochim Biophys Acta 1824:511–519

    Article  CAS  PubMed  Google Scholar 

  • Ohmae E, Miyashita Y, Kato C (2013a) Thermodynamic and functional characteristics of deep-sea enzymes revealed by pressure effects. Extremophiles 17:701–709

    Article  CAS  PubMed  Google Scholar 

  • Ohmae E, Miyashita Y, Tate S, Gekko K, Kitazawa S, Kitahara R, Kuwajima K (2013b) Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and active-site mutant D27E. Biochim Biophys Acta 1834:2782–2794

    Article  CAS  PubMed  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  • Prieur D, Jebbar M, Bartlett D, Kato C, Oger Ph (2010) Piezophilic prokaryotes. In: Sebert P (ed) Comparative high pressure biology. Science Publishers, New Hampshire, pp 285–322

    Chapter  Google Scholar 

  • Royer CA (2002) Revisiting volume changes in pressure-induced protein unfolding. Biochim Biophys Acta 1595:201–209

    Article  CAS  PubMed  Google Scholar 

  • Sineva EV, Davydov DR (2010) Cytochrome P450 from Photobacterium profundum SS9, a piezophilic bacterium, exhibits a tightened control of water access to the active site. Biochemistry 49:10636–10646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Troeppner O, Lippert R, Shubina TE, Zahl A, Jux N, Ivanović-Burmazović I (2014) Reverse spin-crossover and high-pressure kinetics of the heme iron center relevant for the operation of heme proteins under deep-sea conditions. Angew Chem Int Ed Engl 53:11452–11457

    Article  CAS  PubMed  Google Scholar 

  • Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackebrandt E, Nealson KH (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724

    Article  CAS  PubMed  Google Scholar 

  • Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Yamagishi A (2006) The effects of multiple ancestral residues on the Thermus thermophilus 3-isopropylmalate dehydrogenase. FEBS Lett 580:3867–3871

    Article  CAS  PubMed  Google Scholar 

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Cryst D67:235–242

    Google Scholar 

  • Yano JK, Poulos TL (2003) New understandings of thermostable and piezostable enzymes. Curr Opin Biotechnol 14:360–365

    Article  CAS  PubMed  Google Scholar 

  • Yasugi M, Amino M, Suzuki T, Oshima T, Yamagishi A (2001) Cold adaptation of the thermophilic enzyme 3-isopropylmalate dehydrogenase. J Biochem 129:477–484

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the late Prof. Takeo Imai, Rikkyo University, for the directions of this study. This work was supported partially by Grants-in-Aid for Exploratory Research (25450121, 21657027, and 24570186), the Strategic Research Foundation Grant-aided Project for Private Universities (S1201003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and Rikkyo University Special Fund for Research 2014. The synchrotron radiation experiments were performed at AR-NW12A of Photon Factory (Proposal Nos. 2012G648 and 2014G566) and BL41XU of SPring-8 (Proposal No. 2012A1242). The experiments at SPring8 were approved by the Japan Synchrotron Radiation Research Institute (JASRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaki Kato.

Additional information

Communicated by H. Atomi.

Y. Hamajima and T. Nagae contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamajima, Y., Nagae, T., Watanabe, N. et al. Pressure adaptation of 3-isopropylmalate dehydrogenase from an extremely piezophilic bacterium is attributed to a single amino acid substitution. Extremophiles 20, 177–186 (2016). https://doi.org/10.1007/s00792-016-0811-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0811-4

Keywords

Navigation