Skip to main content
Log in

Thermal behaviour and tolerance to ionic liquid [emim]OAc in GH10 xylanase from Thermoascus aurantiacus SL16W

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

GH10 xylanase from Thermoascus aurantiacus strain SL16W (TasXyn10A) showed high stability and activity up to 70–75 °C. The enzyme’s half-lives were 101 h, 65 h, 63 min and 6 min at 60, 70, 75 and 80 °C, respectively. The melting point (T m), as measured by DSC, was 78.5 °C, which is in line with a strong activity decrease at 75–80 °C. The biomass-dissolving ionic liquid 1-ethyl-3-methylimidazolium acetate ([emim]OAc) in 30 % concentration had a small effect on the stability of TasXyn10A; T m decreased by only 5 °C. It was also observed that [emim]OAc inhibited much less GH10 xylanase (TasXyn10A) than the studied GH11 xylanases. The K m of TasXyn10A increased 3.5-fold in 15 % [emim]OAc with xylan as the substrate, whereas the approximate level of V max was not altered. The inhibition of enzyme activity by [emim]OAc was lesser at higher substrate concentrations. Therefore, high solid concentrations in industrial conditions may mitigate the inhibition of enzyme activity by ionic liquids. Molecular docking experiments indicated that the [emim] cation has major binding sites near the catalytic residues but in lower amounts in GH10 than in GH11 xylanases. Therefore, [emim] cation likely competes with the substrate when binding to the active site. The docking results indicated why the effect is lower in GH10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anbarasan S, Jänis J, Paloheimo M, Laitaoja M, Vuolanto M, Karimäki J, Vainiotalo P, Leisola M, Turunen O (2010) Effect of pH, glycosylation and additional domains on the thermostability of family 10 xylanase of Thermopolyspora flexuosa. Appl Environ Microbiol 76:356–360

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Andrade C (1996) Production and characterization of extremely thermostable xylanolytic and amylolytic enzymes from the hyperthermophilic archaeon Pyrodictium abyssi. Ph.D. thesis, Technical University Hamburg-Harburg, Hamburg

  • Bailey MJ, Bieley P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  PubMed  CAS  Google Scholar 

  • Biely P, Markovic O, Mislovicova C (1985) Sensitive detection of endo-1,4-β-glucanases and endo-1,4-β-xylanases in gels. Anal Chem 144:147–151

    CAS  Google Scholar 

  • Brandt A, Graesvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583

    Article  CAS  Google Scholar 

  • Brienzo M, Arantes V, Milagres AMF (2008) Enzymology of the thermophilic ascomycetous fungus Thermoascus aurantiacus. Fungal Biol Rev 22:120–130

    Article  Google Scholar 

  • Cesar T, Mrša V (1996) Purification and properties of the xylanase produced by Thermomyces lanuginosus. Enzyme Microb Technol 19:289–296

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanase, xylanase families and extremophilic xylanases. FEMS Microb Rev 29:3–23

    Article  CAS  Google Scholar 

  • Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39:W270–W277

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hu J, Arantes V, Saddler J (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4:36

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jacobs A, Dahlman O (2001) Characterization of the molar masses of hemicelluloses from wood and pulps employing size exclusion chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Biomacromolecules 2:894–905

    Article  PubMed  CAS  Google Scholar 

  • Jaeger V, Pfaendtner J (2013) Structure, dynamics and activity of xylanase solvated in binary mixtures of ionic liquid and water. ACS Chem Biol 117:2662–2670

    Google Scholar 

  • Kongbuntad W, Khanongnuch C, Lumyong S (2006) Efficacy of xylanase supplementation produced from Thermoascus aurantiacus SL16W in diet on Thai native chicken performance. Int J Poult Sci 5:463–469

    Article  Google Scholar 

  • Kumar V, Satyanarayana T (2013) Biochemical and thermodynamic characteristics of thermo-alkali-stable xylanase from a novel polyextremophilic Bacillus halodurans TSEV1. Extremophiles 17:797–808

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Leisola M, Turunen O (2007) Protein engineering: opportunities and challenges. Appl Microbiol Biotechnol 75:1225–1232

    Article  PubMed  CAS  Google Scholar 

  • Li H, Kankaanpää A, Hummel M, Sixta H, Xiong H, Turunen O (2013) Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulphide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance. Enzyme Microb Technol 53:414–419

    Article  PubMed  Google Scholar 

  • Lo Leggio L, Kalogiannis S, Eckert K, Teixeira SC, Bhat MK, Andrei C, Pickersgill RW, Larsen S (2001) Substrate specificity and subsite mobility in T. aurantiacus xylanase 10A. FEBS Lett 509:303–308

    Article  PubMed  CAS  Google Scholar 

  • Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32:175–201

    Article  Google Scholar 

  • McClendon SD, Batth T, Petzold CJ, Adams PD, Simmons BA, Singer SW (2012) Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnol Biofuels 5:54

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Natesh R, Bhanumoorthy P, Vithayathil PJ, Sekar K, Ramakumar S, Viswamitra MA (1999) Crystal structure at 1.8 Å resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus. J Mol Biol 288:999–1012

    Article  PubMed  CAS  Google Scholar 

  • Natesh R, Manikandan K, Bhanumoorthy P, Viswamitra MA, Ramakumar S (2003) Thermostable xylanase from Thermoascus aurantiacus at ultrahigh resolution (0.89 Å) at 100 K and atomic resolution (1.11 Å) at 293 K refined anisotropically to small-molecule accuracy. Acta Crystallogr D Biol Crystallogr 59:105–117

    Article  PubMed  CAS  Google Scholar 

  • Nordwald EM, Kaar JL (2013) Stabilization of enzymes in ionic liquids via modification of enzyme charge. Biotechnol Bioeng 110:2352–2360

    Article  PubMed  CAS  Google Scholar 

  • Park JI, Steen EJ, Burd H, Evans SS, Redding-Johnson AM, Batth T, Benke PI, D’haeseleer P, Sun N, Sale KL, Keasling JD, Lee TS, Petzold CJ, Mukhopadhyay A, Singer SW, Simmons BA, Gladden JM (2012) A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 7:e37010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  PubMed  CAS  Google Scholar 

  • Quijada-Maldonado E, van der Boogaart S, Lijbers JH, Meindersma GW, de Haan AB (2012) Experimental densities, dynamic viscosities and surface tensions of the ionic liquids series 1-ethyl-3-methylimidazolium acetate and dicyanamide and their binary and ternary mixtures with water and ethanol at T = (298.15–343.15 K). J Chem Thermodyn 51:51–58

    Article  CAS  Google Scholar 

  • Raddadi N, Cherif A, Daffonchio D, Fava F (2013) Halo-alkalitolerant and thermostable cellulases with improved tolerance to ionic liquids and organic solvents from Paenibacillus tarimensis isolated from the Chott El Fejej, Sahara desert, Tunisia. Bioresour Technol 150C:121–128

    Article  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Gladden JM, Sathitsuksanoh N, Kambam P, Sandoval L, Mitra D, Zhang S, George A, Singer SW, Simmons BA, Singh S (2013a) One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chem 15:2579–2589

    Article  CAS  Google Scholar 

  • Shi H, Zhang Y, Li X, Huang Y, Wang L, Wang Y, Ding H, Wang FA (2013b) Novel highly thermostable xylanase stimulated by Ca2+ from Thermotoga thermarum: cloning, expression and characterization. Biotechnol Biofuels 18:26

    Article  Google Scholar 

  • Teixeira RS, da Silva AS, Kim HW, Ishikawa K, Endo T, Lee SH, Bon EP (2013) Use of cellobiohydrolase-free cellulase blends for the hydrolysis of microcrystalline cellulose and sugarcane bagasse pretreated by either ball milling or ionic liquid [Emim][Ac]. Bioresour Technol 149:551–555

    Article  PubMed  Google Scholar 

  • Teugjas H, Väljamäe P (2013) Product inhibition of cellulases studied with 14C-labeled cellulose substrates. Biotechnol Biofuels 6:104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thomas MF, Li LL, Handley-Pendleton JM, van der Lelie D, Dunn JJ, Wishart JF (2011) Enzyme activity in dialkyl phosphate ionic liquids. Bioresour Technol 102:11200–11203

    Article  PubMed  CAS  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wahlström W, King A, Parviainen A, Kruus K, Suurnäkki A (2013) Cellulose hydrolysis with thermo- and alkali-tolerant cellulases in cellulose-dissolving superbase ionic liquids. RSC Adv 3:20001–20009

    Article  Google Scholar 

  • Wang Y, Fu Z, Huang H, Yao B, Zhang H, Xiong H, Turunen O (2012) Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Bioresour Technol 112:275–279

    Article  PubMed  CAS  Google Scholar 

  • Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  PubMed  CAS  Google Scholar 

  • Winterhalter C, Liebl W (1995) Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 61:1810–1815

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xiong H, Nyyssölä A, Jänis J, Santa H, Pastinen O, von Weymarn N, Leisola M, Turunen O (2004a) Characterization of the xylanase produced by submerged cultivation of Thermomyces lanuginosus DSM 10635. Enzyme Microb Technol 35:93–99

    Article  CAS  Google Scholar 

  • Xiong H, Fenel F, Leisola M, Turunen O (2004b) Engineering the thermostability of Trichoderma reesei endo-1,4-β-xylanase II by combination of disulphide bridges. Extremophiles 8:393–400

    Article  PubMed  CAS  Google Scholar 

  • Xiong H, von Weymarn N, Turunen O, Leisola M, Pastinen O (2005) Xylanase production by Trichoderma reesei Rut C-30 grown on l-arabinose-rich plant hydrolysates. Bioresour Technol 96:753–759

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12:1941–1947

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Datta S, Eichler J, Ivanova N, Axen SD, Kerfeld CA, Chen F, Kyrpides N, Hugenholtz P, Cheng J-F, Sale KL, Simmons B, Rubin E (2011) Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance. Green Chem 13:2083–2090

    Article  CAS  Google Scholar 

  • Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN (2009) Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol 139:47–54

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. grant, Contract No. PHD/0189/2548 and Centre of Excellent for Renewable Energy, Chiang Mai University. We thank Johanna Aura for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ossi Turunen.

Additional information

Communicated by L. Huang.

N. Chawachart and S. Anbarasan contributed equally to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawachart, N., Anbarasan, S., Turunen, S. et al. Thermal behaviour and tolerance to ionic liquid [emim]OAc in GH10 xylanase from Thermoascus aurantiacus SL16W. Extremophiles 18, 1023–1034 (2014). https://doi.org/10.1007/s00792-014-0679-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0679-0

Keywords

Navigation