Skip to main content
Log in

Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure

  • Note
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Hydrostatic pressure is a well-known physical stimulus, but its effects on cell physiology have not been clarified. To investigate pressure effects on Escherichia coli, we carried out DNA microarray analysis of the entire E. coli genome. The microarray results showed pleiotropic effects on gene expression. In particular, heat- and cold-stress responses were induced simultaneously by the elevated pressure. Upon temperature stress (including both temperature up- and down-shifts) and other environmental stresses, gene expression adjusts to adapt to such environmental changes through regulations by several DNA-binding proteins. An E. coli mutant, which deleted the hns gene encoding one of the regulator proteins, exhibited great pressure sensitivity. The result suggested that the H-NS protein was a possible transcriptional regulator for adaptation of the high-pressure stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baierlein R, Infante AA (1974) Pressure-induced dissociation of ribosomes. Methods Enzymol 30:328–345

    Article  CAS  PubMed  Google Scholar 

  • Cossins AR, Macdonald AG (1984) Homeoviscous theory under pressure: the molecular order of membranes from deep-sea fish. Biochim Biophys Acta 776:144–150

    Article  CAS  Google Scholar 

  • Dammel CS, Noller, HF (1995) Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9:626–637

    CAS  PubMed  Google Scholar 

  • Delong EF, Yayanos AA (1985) Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1102

    CAS  PubMed  Google Scholar 

  • Delong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Env Microbiol 51:730–737

    CAS  Google Scholar 

  • Dersch P, Kneip S, Breme E (1994) The nucleoid-associated DNA-binding protein H-NS is required for the efficient adaptation of Escherichia coli K-12 to a cold environment. Mol Genet Genomics 245:255–259

    CAS  Google Scholar 

  • Gross M, Lehle K, Jaenicke R, Nierhaus KH (1993) Pressure-induced dissociation of ribosomes and elongation cycle intermediates. Stabilizing conditions and identification of the most sensitive functional state. Eur J Biochem 218:463–468

    CAS  PubMed  Google Scholar 

  • Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, Le Caer JP, Danchin A, Bertin P (2001) Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40:20–36

    Article  CAS  PubMed  Google Scholar 

  • Hurme R, Rhen M (1998) Temperature sensing in bacterial gene regulation—what it all boils down to. Mol Microbiol 30:1–6

    Article  CAS  PubMed  Google Scholar 

  • Infante AA, Baierlein R (1971) Pressure-induced dissociation of sedimenting ribosomes: effect on sedimentation patterns. Proc Natl Acad Sci USA 68:1780–1785

    CAS  PubMed  Google Scholar 

  • Jones PG, Inoue M (1994) The cold-shock response—a hot topic. Mol Microbiol 11:811–818

    CAS  PubMed  Google Scholar 

  • Kato C, Sato T, Smorawinska M, Horikoshi K (1994) High pressure conditions stimulate expression of chloramphenicol acetyltransferase regulated by the lac promoter in Escherichia coli. FEMS Microbiol Lett 122:91–96

    CAS  PubMed  Google Scholar 

  • Kato C, Sato T, Horikoshi K (1995) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodiv Conserv 4:1–9

    Google Scholar 

  • Kato C, Nakasone K, Quereshi MH, Horikoshi K (2000) How do deep-sea microorganisms respond to changes in environmental pressure? In: Storey KB, Storey J (ed) Environmental stresses and gene responses. Elsevier, Amsterdam, pp 277–291

    Google Scholar 

  • Lemaux PG, Herendeen S, Bloch PL, Neidhardt FC (1978) Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts. Cell 13:427–434

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Garcia P, Forterre P (2000) DNA topology and the temperature stress response, a tale from mesophiles and hyperthermophiles. Bioessays 22:738–746

    Article  CAS  PubMed  Google Scholar 

  • Macdonald AG (1984) The effects of pressure on the molecular structure and physiological functions of cell membranes. Philos Trans R Soc London 304B:47–68

    Google Scholar 

  • Marr AG, Ingraham JL (1962) Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 84:1260–1267

    CAS  Google Scholar 

  • Meng SY, Bennett GN (1992) Regulation of the Escherichia coli cad operon: location of a site required for pH induction. J Bacteriol 174:2670–2678

    CAS  PubMed  Google Scholar 

  • Morris RJ (1971) Seasonal and environmental effects on the lipid composition of Neomysis integer. J Mar Biol Assoc UK 51:21–31

    CAS  Google Scholar 

  • Oshima T, Wada C, Kawagoe Y, Ara T, Maeda M, Masuda Y, Hiraga S, Mori H (2002) Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol Microbiol 45:673–695

    Article  CAS  PubMed  Google Scholar 

  • Purss GT, Drilica K (1989) DNA supercoiling and prokaryotic transcription. Cell 56:521–523

    PubMed  Google Scholar 

  • Riley M, Labedan B (1996) Escherichia coli gene products: physiological functions and common ancestries. In: Neidhardt FC, Curtiss R, Gross C, Ingraham JL, Lin ECC, Low KB et al (eds) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology Press, Washington, pp 2118–2202

    Google Scholar 

  • Sato T, Nakamura Y, Nakashima KK, Kato C, Horikoshi K (1996) High pressure represses expression of the malB operon in Escherichia coli. FEMS Microbiol Lett 135:111–116

    Article  CAS  PubMed  Google Scholar 

  • Sinensky M (1974) Homeoviscous adatpation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525

    CAS  PubMed  Google Scholar 

  • Tamura K, Shimizu T, Kourai H (1992) Effects of ethanol on the growth and elongation of Escherichia coli under high pressures up to 40 MPa. FEMS Microbiol Lett 99:321–324

    Article  CAS  Google Scholar 

  • Thieringer H A, Jones PG, Inouye M (1998) Cold shock and adaptation. BioEssays 20:49–57

    Article  PubMed  Google Scholar 

  • VanBogelen RA, Neidhardt FC (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci USA 87:5589–5593

    CAS  PubMed  Google Scholar 

  • Vigh L, Maresca B, Harwood JL (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci 23:369–374

    Article  CAS  PubMed  Google Scholar 

  • Welch TJ, Farewell A, Neidhardt FC, Bartlett DH (1993) Stress response of Escherichia coli to elevated hydrostatic pressure. J Bacteriol 175:7170–7177

    CAS  PubMed  Google Scholar 

  • Yamamori T, Yura T (1980) Temperature-induced synthesis of specific proteins in Escherichia coli: evidence for transcriptional control. J Bacteriol 142:843–851

    CAS  PubMed  Google Scholar 

  • Yamamori T, Ito K, Nakamura Y, Yura T (1978) Transient regulation of protein synthesis in Escherichia coli upon shift-up of growth temperature. J Bacteriol 134:1133–1140

    CAS  PubMed  Google Scholar 

  • Yamanaka K (1999) Cold shock response in Escherichia coli. J Mol Biotechnol 1:193–202

    CAS  Google Scholar 

  • Yayanos AA, Van Boxtel R (1969) A study of the effects of hydrostatic pressure on macromolecular synthesis in Escherichia coli. Biophys J 9:1464–1482

    CAS  PubMed  Google Scholar 

  • Yoshida T, Ueguchi C, Yamada H, Mizuno T (1993) Function of the Escherichia coli nucleoid protein, H-NS: molecular analysis of a subset of proteins whose expression is enhanced in an hns deletion mutant. Mol Genet Genomics 237:113–122

    CAS  Google Scholar 

  • Zobell CE, Cobet AB (1962) Effects of hydrostatic pressure on E. coli. J Bacteriol 84:1228–1236

    CAS  PubMed  Google Scholar 

  • Zobell CE, Cobet AB (1964) Filament formation by Escherichia coli at increased hydrostatic pressures. J Bacteriol 87:710–719

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. C. Yenches for assistance in editing the manuscript. This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas: Single-Cell Molecular Technology (area number 736).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaki Kato.

Additional information

Communicated by K. Horikoshi

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, A., Oshima, T., Sato, T. et al. Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure. Extremophiles 9, 65–73 (2005). https://doi.org/10.1007/s00792-004-0414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0414-3

Keywords

Navigation