Skip to main content
Log in

Wavelet Galerkin BEM on unstructured meshes

  • Regular article
  • Published:
Computing and Visualization in Science

Abstact

The present paper is devoted to the fast solution of boundary integral equations on unstructured meshes by the Galerkin scheme. On the given mesh we construct a wavelet basis providing vanishing moments with respect to the traces of polynomials in the space. With this basis at hand, the system matrix in wavelet coordinates can be compressed to O(Nlog N) relevant matrix coefficients, where N denotes the number of unknowns. The compressed system matrix can be computed within suboptimal complexity by using techniques from the fast multipole method or panel clustering. Numerical results prove that we succeeded in developing a fast wavelet Galerkin scheme for solving the considered class of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70, 1–24 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beylkin, G., Coifman, R., Rokhlin, V.: The fast wavelet transform and numerical algorithms. Comm. Pure and Appl. Math. 44, 141–183 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cohen, A.: Numerical analysis of wavelet methods. Studies in Mathematics and its Applications 32, North–Holland, Amsterdam (2003)

  4. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North–Holland, Amsterdam (1978)

  5. Dahmen, W.: Stability of multiscale transformations. Journal of Fourier Analysis and Applications 2, 341–361 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numerica 6, 55–228 (1997)

    Article  MathSciNet  Google Scholar 

  7. Dahmen, W., Harbrecht, H., Schneider, R.: Compression techniques for boundary integral equations – optimal complexity estimates. Preprint SFB 393/02-06, TU Chemnitz. to appear in SIAM J. Numer. Anal. (2002)

  8. Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math. 63, 315–344 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dahmen, W., Kunoth, A., Urban, K.: Biorthogonal spline-wavelets on the interval – stability and moment conditions. Appl. Comp. Harm. Anal. 6, 259–302 (1999)

    Article  MathSciNet  Google Scholar 

  10. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulation. J. Comput. Phys. 73, 325–348 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hackbusch, W., Khoromskij, B.N.: A sparse H-matrix arithmetic. II: Application to multi-dimensional problems. Computing 64, 21–47 (2000)

    MATH  MathSciNet  Google Scholar 

  12. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Oswald, P.: Multilevel norms for H −1/2. Computing 61, 235–255 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schmidlin, G., Schwab, C.: Wavelet Galerkin BEM on unstructured meshes by aggregation. In: Multiscale and multiresolution methods, pp. 359–378, Lect. Notes Comput. Sci. Eng. 20, Springer, Berlin (2002)

  15. Schneider, R.: Multiskalen- und Wavelet-Matrix-kom-pres-sion: Analysisbasierte Methoden zur Lösung großer vollbesetzter Gleichungssysteme. B.G. Teubner, Stuttgart (1998)

  16. Schwab, C.: Variable order composite quadrature of singular and nearly singular integrals. Computing 53, 173–194 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tausch, J., White, J.: Multiscale bases for the sparse representation of boundary integral operators on complex geometries. SIAM J. Sci. Comput. 24, 1610–1629 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wendland, W.L.: On asymptotic error analysis and underlying mathematical principles for boundary element methods. In: C.A. Brebbia (ed.) Boundary Element Techniques in Computer Aided Engineering, NATO ASI Series E-84, pp. 417–436, Martinus Nijhoff Publ., Dordrecht–Boston–Lancaster (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Harbrecht.

Additional information

Mathematics Subject Classification (2000) 47A20; 65F50; 65N38; 65R20; 65T60

This work is supported in part by the SFB 393 Numerical Simulation on Massive Parallel Computers funded by the Deutsche Forschungsgemeinschaft.

Dedicated to George C. Hsiao on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harbrecht, H., Kähler, U. & Schneider, R. Wavelet Galerkin BEM on unstructured meshes. Comput. Visual Sci. 8, 189–199 (2005). https://doi.org/10.1007/s00791-005-0009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-005-0009-2

Keywords

Navigation