Skip to main content

Advertisement

Log in

Effects of different doses of ionizing radiation on alveolar bone repair in post-extraction tooth socket: an experimental study in rats

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

This study aimed to evaluate the dose–response effects of ionizing radiation (IR) on alveolar bone repair and bone strength after tooth extraction.

Materials and methods

A total of 32 male Wistar rats were used in the study, 28 animals were included in the final analysis, and n = 7 for each experimental group. Mandibular first molars were extracted. After 7 days, the animals were randomly divided into four groups according to single-dose irradiation: NIr, control group; Ir15, irradiated at 15 Gy; Ir20, irradiated at 20 Gy; and Ir30, irradiated at 30 Gy. The tooth extraction sites were subjected to micro-computed tomography (micro-CT), histological, histomorphometric, and biomechanical analyses 14 days after extraction. Data were analyzed using one-way ANOVA followed by Tukey’s post hoc test (α = 0.05).

Results

Micro-CT analysis revealed that IR led to lower values of bone volume (BV, in mm3) (0.68 ± 0.08, P < 0.001) and bone volume fraction, ratio of the segmented bone volume to the total volume of the region of interest (BV/TV, in %) (44.1 ± 8.3, P < 0.001) for the Ir30 group compared to the control group. A significantly lower amount of newly formed bone was observed in the Ir30 (P = 0.005) than in the Ir15 group. The histomorphometric results of quantification of bone matrix neoformation and the micro-CT were in agreement, demonstrating greater damage to the Ir30 group. IR30 cells showed a lower percentage of densely packed collagen than control cells. No significant differences were found in the biomechanical parameters.

Conclusion

IR affects alveolar bone repair. A dose of 30 Gy reduced the bone healing process owing to a smaller amount of newly formed bone and a lower percentage of densely packed collagen. Therefore, a dose of 30 Gy can be used to successfully establish an animal model of an irradiated mandible that mimics the irradiated clinical conditions.

Clinical relevance

Radiotherapy can lead to severe side effects and tooth extraction is a major risk factor. A proper understanding of the pathological mechanisms of radiation in alveolar bone repair requires the establishment of a suitable animal model of clinical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Machiels JP, René Leemans C, Golusinski W et al (2020) Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 31(11):1462–1475. https://doi.org/10.1016/j.annonc.2020.07.011

    Article  PubMed  Google Scholar 

  2. Wang TH, Liu CJ, Chao TF, Chen TJ, Hu YW (2017) Risk factors for and the role of dental extractions in osteoradionecrosis of the jaws: a national-based cohort study. Head Neck 39(7):1313–2132. https://doi.org/10.1002/hed.24761

    Article  PubMed  Google Scholar 

  3. Yamasaki MC, Nejaim Y, Roque-Torres GD, Freitas DQ (2017) Meloxicam as a radiation-protective agent on mandibles of irradiated rats. Braz Dent J 28(2):249–255. https://doi.org/10.1590/0103-6440201701271

    Article  PubMed  Google Scholar 

  4. Irie MS, Mendes EM, Borges JS, Osuna LG, Rabelo GD, Soares PB (2018) Periodontal therapy for patients before and after radiotherapy: a review of the literature and topics of interest for clinicians. Med Oral Patol Oral Cir Bucal 23(5):e524–e530. https://doi.org/10.4317/medoral.22474

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tchanque-Fossuo CN, Monson LA, Farberg AS, Donneys A, Zehtabzadeh AJ, Razdolsky ER, Buchman SR (2011) Dose-response effect of human equivalent radiation in the murine mandible: part I. A histomorphometric assessment. Plast Reconstr Surg 128(1):114–121

    Article  PubMed  PubMed Central  Google Scholar 

  6. Soares PBF, Soares CJ, Limirio PHJO et al (2019) Effect of ionizing radiation after-therapy interval on bone: histomorphometric and biomechanical characteristics. Clin Oral Investig 23(6):2785–2793. https://doi.org/10.1007/s00784-018-2724-3

    Article  PubMed  Google Scholar 

  7. Mendes EM, Irie MS, Rabelo GD, Borges JS, Dechichi P, Diniz RS, Soares PBF (2020) Effects of ionizing radiation on woven bone: influence on the osteocyte lacunar network, collagen maturation, and microarchitecture. Clin Oral Investig 24(8):2763–2771. https://doi.org/10.1007/s00784-019-03138-x

    Article  PubMed  Google Scholar 

  8. Soares PBF, Soares CJ, Limirio PHJO, Lara VC, Moura CCG, Zanetta-Barbosa D (2020) Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implant. J Appl Oral Sci 28:e20200191. https://doi.org/10.1590/1678-7757-2020-0191

    Article  PubMed  PubMed Central  Google Scholar 

  9. Borges JS, Rabelo GD, Irie MS, Paz JLC, Spin-Neto R, Soares PBF (2021) Cortical bone modifications after radiotherapy: cortex porosity and osteonal changes evaluated over time. Braz Dent J 32(1):9–15. https://doi.org/10.1590/0103-6440202103384

    Article  PubMed  Google Scholar 

  10. Bartlow CM, Mann KA, Damron TA, Oest ME (2018) Limited field radiation therapy results in decreased bone fracture toughness in a murine model. PLoS One 13(10):e0204928. https://doi.org/10.1371/journal.pone.0204928

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fenner M, Park J, Schulz N et al (2010) Validation of histologic changes induced by external irradiation in mandibular bone. An experimental animal model. J Craniomaxillofac Surg 38(1):47–53. https://doi.org/10.1016/j.jcms.2009.07.011

    Article  PubMed  Google Scholar 

  12. Sønstevold T, Johannessen AC, Stuhr L (2015) A rat model of radiation injury in the mandibular area. Radiat Oncol 9(10):129. https://doi.org/10.1186/s13014-015-0432-6

    Article  Google Scholar 

  13. Rabelo GD, Beletti ME, Dechichi P (2010) Histological analysis of the alterations on cortical bone channels network after radiotherapy: a rabbit study. Microsc Res Tech 73(11):1015–1018. https://doi.org/10.1002/jemt.20826

    Article  PubMed  Google Scholar 

  14. Butterworth KT, Williams JP (2021) Animal models for radiotherapy research: all (animal) models are wrong but some are useful. Cancers 13(6):1319. https://doi.org/10.3390/cancers13061319

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dréno M, Bléry P, Guicheux J, Weiss P, Malard O, Espitalier F (2020) Development of a rat model of mandibular irradiation sequelae for preclinical studies of bone repair. Tissue Eng Part C Methods 26(8):447–455. https://doi.org/10.1089/ten.TEC.2020.0109

    Article  PubMed  Google Scholar 

  16. Wein M, Huelter-Hassler D, Nelson K et al (2019) Differential osteopontin expression in human osteoblasts derived from iliac crest and alveolar bone and its role in early stages of angiogenesis. J Bone Miner Metab 37(1):105–117. https://doi.org/10.1007/s00774-017-0900-1

    Article  PubMed  Google Scholar 

  17. Hassumi JS, Mulinari-Santos G, Fabris ALDS et al (2018) Alveolar bone healing in rats: micro-CT, immunohistochemical and molecular analysis. J Appl Oral Sci 26:e20170326. https://doi.org/10.1590/1678-7757-2017-0326

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bléry P, Espitalier F, Hays A et al (2015) Development of mandibular osteoradionecrosis in rats: importance of dental extraction. J Craniomaxillofac Surg 43(9):1829–1836. https://doi.org/10.1016/j.jcms.2015.08.016

    Article  PubMed  Google Scholar 

  19. Ervolino E, Statkievicz C, Toro LF et al (2019) Antimicrobial photodynamic therapy improves the alveolar repair process and prevents the occurrence of osteonecrosis of the jaws after tooth extraction in senile rats treated with zoledronate. Bone 120:101–113. https://doi.org/10.1016/j.bone.2018.10.014

    Article  PubMed  Google Scholar 

  20. Aline D, Laura B, Stephan L, Jean-Christophe B, Anne-Gaëlle C (2020) Assessment of irradiated socket healing in the rabbit’s mandible: experimental study. Res Vet Sci 133:226–231. https://doi.org/10.1016/j.rvsc.2020.09.021

    Article  PubMed  Google Scholar 

  21. Coelho PGB, Souza MV, Conceição LG, Viloria MIV, Bedoya SÃO (2018) Evaluation of dermal collagen stained with picrosirius red and examined under polarized light microscopy. An Bras Dermatol 93(3):415–418. https://doi.org/10.1590/abd1806-4841.20187544

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith LR, Barton ER (2014) Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice. Am J Physiol Cell Physiol 306(10):C889–C898. https://doi.org/10.1152/ajpcell.00383.2013

    Article  PubMed  PubMed Central  Google Scholar 

  23. Amler AK, Schlauch D, Tüzüner S et al (2021) Pilot investigation on the dose-dependent impact of irradiation on primary human alveolar osteoblasts in vitro. Sci Rep 11(1):19833. https://doi.org/10.1038/s41598-021-99323-8

    Article  PubMed  PubMed Central  Google Scholar 

  24. de Almeida SM, Ferreira RI, Bóscolo FN (2002) Influence of irradiation on collagen content during wound healing in diabetic rats. Pesqui Odontol Bras 16(4):293–298. https://doi.org/10.1590/s1517-74912002000400003

    Article  PubMed  Google Scholar 

  25. Niehoff P, Springer IN, Açil Y et al (2008) HDR brachytherapy irradiation of the jaw - as a new experimental model of radiogenic bone damage. J Craniomaxillofac Surg 36(4):203–209. https://doi.org/10.1016/j.jcms.2008.01.003

    Article  PubMed  Google Scholar 

  26. Sakurai T, Ito M, Mikamoto T, Ohshio R, Miyakoshi J (2011) Ionising irradiation-induced inhibition of differentiation of C3H10T1/2 cells to the osteoblastic lineage. Int J Radiat Biol 87(5):447–52. https://doi.org/10.3109/09553002.2011.542545

    Article  PubMed  Google Scholar 

  27. Mitsimponas KT, Moebius P, Amann K, Stockmann P, Schlegel KA, Neukam FW, Wehrhan F (2014) Osteo-radio-necrosis (ORN) and bisphosphonate-related osteonecrosis of the jaws (BRONJ): the histopathological differences under the clinical similarities. Int J Clin Exp Pathol 7(2):496–508

    PubMed  PubMed Central  Google Scholar 

  28. Nyaruba MM, Yamamoto I, Kimura H, Morita R (1998) Bone fragility induced by X-ray irradiation in relation to cortical bone-mineral content. Acta Radiol 39(1):43–46. https://doi.org/10.1080/02841859809172147

    Article  PubMed  Google Scholar 

  29. Wernle JD, Damron TA, Allen MJ, Mann KA (2010) Local irradiation alters bone morphology and increases bone fragility in a mouse model. J Biomech 43(14):2738–2746. https://doi.org/10.1016/j.jbiomech.2010.06.017

    Article  PubMed  Google Scholar 

  30. Tchanque-Fossuo CN, Monson LA, Farberg AS et al (2001) Dose-response effect of human equivalent radiation in the murine mandible: part II. A biomechanical assessment. Plast Reconstr Surg 128(5):480e–487e. https://doi.org/10.1097/PRS.0b013e31822b67ae

    Article  Google Scholar 

  31. Felice PA, Ahsan S, Perosky JE, Deshpande SS, Nelson NS, Donneys A, Kozloff KM, Buchman SR (2014) Prophylactic amifostine preserves the biomechanical properties of irradiated bone in the murine mandible. Plast Reconstr Surg 133(3):314e–321e. https://doi.org/10.1097/01.prs.0000438454.29980.f8

    Article  PubMed  PubMed Central  Google Scholar 

  32. Michel G, Blery P, Henoux M et al (2018) Bone marrow cell extract promotes the regeneration of irradiated bone. PLoS One 3(4):e0196145. https://doi.org/10.1371/journal.pone.0196145

    Article  Google Scholar 

  33. Pitol-Palin L, de Souza Batista FR, Gomes-Ferreira PHS et al (2020) Different stages of alveolar bone repair process are compromised in the type 2 diabetes condition: an experimental study in rats. Biology (Basel) 9(12):471. https://doi.org/10.3390/biology9120471

    Article  PubMed  Google Scholar 

  34. Uchihashi K, Aoki S, Matsunobu A, Toda S (2013) Osteoblast migration into type I collagen gel and differentiation to osteocyte-like cells within a self-produced mineralized matrix: a novel system for analyzing differentiation from osteoblast to osteocyte. Bone 52(1):102–110. https://doi.org/10.1016/j.bone.2012.09.001

    Article  PubMed  Google Scholar 

  35. Chen Y, Guo Y, Li J et al (2020) Endoplasmic reticulum stress remodels alveolar bone formation after tooth extraction. J Cell Mol Med 24(21):12411–12420. https://doi.org/10.1111/jcmm.15753

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lerouxel E, Moreau A, Bouler JM, Giumelli B, Daculsi G, Weiss P, Malard O (2009) Effects of high doses of ionising radiation on bone in rats: a new model for evaluation of bone engineering. Br J Oral Maxillofac Surg 47(8):602–607. https://doi.org/10.1016/j.bjoms.2008.12.011

    Article  PubMed  Google Scholar 

  37. Poort LJ, Ludlage JHB, Lie N, Böckmann RA, Odekerken JCE, Hoebers FJ, Kessler PAWH (2017) The histological and histomorphometric changes in the mandible after radiotherapy: an animal model. J Craniomaxillofac Surg 45(5):716–721. https://doi.org/10.1016/j.jcms.2017.02.014

    Article  PubMed  Google Scholar 

  38. Limirio PHJO, Soares PBF, Emi ETP, Lopes CCA, Rocha FS, Batista JD, Rabelo GD, Dechichi P (2019) Ionizing radiation and bone quality: time-dependent effects. Radiat Oncol 14(1):15. https://doi.org/10.1186/s13014-019-1219-y

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen M, Huang Q, Xu W et al (2014) Low-dose X-ray irradiation promotes osteoblast proliferation, differentiation and fracture healing. PLoS One 9(8):e104016. https://doi.org/10.1371/journal.pone.0104016

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zong C, Cai B, Wen X et al (2016) The role of myofibroblasts in the development of osteoradionecrosis in a newly established rabbit model. J Craniomaxillofac Surg 44(6):725–733. https://doi.org/10.1016/j.jcms.2016.03.002

    Article  PubMed  Google Scholar 

  41. Tamplen M, Trapp K, Nishimura I, Armin B, Steinberg M, Beumer J, Abemayor E, Nabili V (2011) Standardized analysis of mandibular osteoradionecrosis in a rat model. Otolaryngol Head Neck Surg 145(3):404–410. https://doi.org/10.1177/0194599811400576

    Article  PubMed  Google Scholar 

  42. Yamamoto-Silva FP, Bradaschia-Correa V, Lima LA, Arana-Chavez VE (2013) Ultrastructural and immunohistochemical study of early repair of alveolar sockets after the extraction of molars from alendronate-treated rats. Microsc Res Tech 76(6):633–640. https://doi.org/10.1002/jemt.22210

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscilla Barbosa Ferreira Soares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, J.S., Paula, I.S., de Araújo Reis, N.T. et al. Effects of different doses of ionizing radiation on alveolar bone repair in post-extraction tooth socket: an experimental study in rats. Clin Oral Invest 27, 7583–7593 (2023). https://doi.org/10.1007/s00784-023-05348-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-05348-w

Keywords

Navigation