Skip to main content

Advertisement

Log in

Antineoplastic therapy in childhood cancer patients presents a negative impact in the periodontal tissues: a cohort study

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To investigate the effect of antineoplastic therapy (AT) in the periodontal tissues of childhood cancer (CC) patients.

Materials and methods

Seventy-two individuals were divided into CC (n=36) and healthy individuals (control group—CG, n=36). Demographics, hygiene habits, CC type, and AT were collected. Salivary flow and the presence and concentration of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, and Fusobacterium nucleatum were analyzed. Clinical evaluation included plaque (PI) and gingival indexes (GI), periodontal probing depth (PPD), and clinical attachment level (CAL). Patients were classified into periodontal health, gingivitis, or periodontitis. Descriptive statistics, T test, Mann-Whitney test, chi-square, Fisher’s exact test, and two-way analysis of variance were used (p<0.05).

Results

The mean age of the patients was similar (CC 12.0±3.9 years and CG 12.0±4.0 years). In the CC group, all patients underwent chemotherapy and nine radiotherapy. Color/race, income, and family education showed significant differences between groups. There was no difference between groups in salivary flow. Higher levels of Fusobacterium nucleatum were seen in CC (p=0.02). Significant difference between groups was found for PI (CC: 30.5%, CG: 22.6%), GI (CC: 28.8%, CG: 17.3%), PPD (CC: 1.77 mm, CG: 1.61 mm), and CAL (CC: 1.77 mm, CG: 1.57 mm), periodontal health (CC: 3, CG: 7), gingivitis (CC: 16, CG: 24), or periodontitis (CC: 17, CG: 5).

Conclusion

AT in CC patients presents a negative impact in the periodontal and microbiological parameters.

Clinical relevance

Childhood cancer individuals showed worse periodontal parameters and higher levels of Fusobacterium nucleatum in the saliva when compared to healthy individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data generated by the analysis of the primary data from this study are included in this published article. All data and materials are available from the corresponding author upon reasonable request.

References

  1. International Agency for Research on Cancer - IARC (2016) World health organization: international childhood cancer day: much remains to be done to fight childhood cancer. https://www.iarc.fr/en/media-centre/pr/2016/pdfs/pr241_E.pdf. Accessed 10 January 2023

  2. Instituto Nacional do Câncer – INCA (2023) Tipos de câncer: câncer infantojuvenil. https://www.inca.gov.br/tipos-de-cancer/cancer-infantojuvenil. Accessed 10 January 2023

  3. Çetiner D, Çetiner S, Uraz A, Alpaslan GH, Alpaslan C, Toygar Memikoğlu TU, Karadeniz C (2019) Oral and dental alterations and growth disruption following chemotherapy in long-term survivors of childhood malignancies. Support Care Cancer 27:1891–1899. https://doi.org/10.1007/s00520-018-4454-0

    Article  PubMed  Google Scholar 

  4. Oeffinger KC, Mertens AC, Sklar CA, Childhood cancer survivor study et al (2006) Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 12:1572–1582. https://doi.org/10.1056/NEJMsa060185

    Article  Google Scholar 

  5. Cubukcu CE, Sevinir B, Ercan I (2012) Disturbed dental development of permanent teeth in children with solid tumors and lymphomas. Pediatr Blood Cancer 58:80–84. https://doi.org/10.1002/pbc.22902

    Article  PubMed  Google Scholar 

  6. Alpaslan G, Alpaslan C, Gögen H, Oğuz A, Cetiner S, Karadeniz C (1999) Disturbances in oral and dental structures in patients with pediatric lymphoma after chemotherapy: a preliminary report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87:317–321. https://doi.org/10.1016/s1079-2104(99)70215-5

    Article  PubMed  Google Scholar 

  7. Pedersen LB, Clausen N, Schrøder H, Schmidt M, Poulsen S (2012) Microdontia and hypodontia of premolars and permanent molars in childhood cancer survivors after chemotherapy. Int J Paediatr Dent 22:239–243. https://doi.org/10.1111/j.1365-263X.2011.01199.x

    Article  PubMed  Google Scholar 

  8. Nemeth O, Hermann P, Kivovics P, Garami M (2013) Long-term effects of chemotherapy on dental status of children cancer survivors. Pediatr Hematol Oncol 30:208–215. https://doi.org/10.3109/08880018.2013.763391

    Article  PubMed  Google Scholar 

  9. Avşar A, Elli M, Darka O, Pinarli G (2007) Long-term effects of chemotherapy on caries formation, dental development, and salivary factors in childhood cancer survivors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:781–789. https://doi.org/10.1016/j.tripleo.2007.02.029

    Article  PubMed  Google Scholar 

  10. Valéra MC, Noirrit-Esclassan E, Pasquet M, Vaysse F (2015) Oral complications and dental care in children with acute lymphoblastic leukaemia. J Oral Pathol Med 44:483–489. https://doi.org/10.1111/jop.12266

    Article  PubMed  Google Scholar 

  11. Morais EF, Lira JA, Macedo RA, Santos KS, Elias CT, Morais Mde L (2014) Oral manifestations resulting from chemotherapy in children with acute lymphoblastic leukemia. Braz J Otorhinolaryngol 80:78–85. https://doi.org/10.5935/1808-8694.20140015

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oğuz A, Cetiner S, Karadeniz C, Alpaslan G, Alpaslan C, Pinarli G (2004) Long-term effects of chemotherapy on orodental structures in children with non-Hodgkin’s lymphoma. Eur J Oral Sci 112:8–11. https://doi.org/10.1111/j.0909-8836.2004.00094.x

    Article  PubMed  Google Scholar 

  13. Hegde AM, Joshi S, Rai K, Shetty S (2011) Evaluation of oral hygiene status, salivary characteristics and dental caries experience in acute lymphoblastic leukemic (ALL) children. J Clin Pediatr Dent 35:319–323. https://doi.org/10.17796/jcpd.35.3.u5kx28q33m760834

    Article  PubMed  Google Scholar 

  14. Shayani A, Aravena PC, Rodríguez-Salinas C, Escobar-Silva P, Diocares-Monsálvez Y, Angulo-Gutiérrez C, Rivera C (2022) Chemotherapy as a risk factor for caries and gingivitis in children with acute lymphoblastic leukemia: a retrospective cohort study. Int J Paediatr Dent 32:538–545. https://doi.org/10.1111/ipd.12932

    Article  PubMed  Google Scholar 

  15. Soutome S, Otsuru M, Kawashita Y, Funahara M, Ukai T, Saito T (2021) Effect of cancer treatment on the worsening of periodontal disease and dental caries: a preliminary, retrospective study. Oral Health Prev Dent 7:399–404. https://doi.org/10.3290/j.ohpd.b1757253

    Article  Google Scholar 

  16. Papapanou PN, Sanz M, Buduneli N et al (2018) Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol 89:S173–S182. https://doi.org/10.1002/JPER.17-0721

    Article  PubMed  Google Scholar 

  17. Trombelli L, Farina R, Silva CO, Tatakis DN (2018) Plaque-induced gingivitis: case definition and diagnostic considerations. J Clin Periodontol 45(Suppl 20):S44–S67. https://doi.org/10.1111/jcpe.12939

    Article  PubMed  Google Scholar 

  18. Lang NP, Bartold PM (2018) Periodontal health. J Periodontol 89(Suppl 1):S9–S16. https://doi.org/10.1002/JPER.16-0517

    Article  PubMed  Google Scholar 

  19. Chen Y, Shi T, Li Y, Huang L, Yin D (2022) Fusobacterium nucleatum: the opportunistic pathogen of periodontal and peri-implant diseases. Front Microbiol 13:860149. https://doi.org/10.3389/fmicb.2022.860149

    Article  PubMed  PubMed Central  Google Scholar 

  20. Araujo MW, Hovey KM, Benedek JR et al (2003) Reproducibility of probing depth measurement using a constant-force electronic probe: analysis of inter- and intraexaminer variability. J Periodontol 74:1736–1740. https://doi.org/10.1902/jop.2003.74.12.1736

    Article  PubMed  Google Scholar 

  21. Carmo CDS, Ribeiro MRC, Teixeira JXP et al (2018) Added sugar consumption and chronic oral disease burden among adolescents in Brazil. J Dent Res 97:508–514. https://doi.org/10.1177/0022034517745326

    Article  PubMed  Google Scholar 

  22. Steliarova-Foucher E, Colombet M, Ries LAG, Rous B, Stiller CA (2017) Classification of tumours. In: Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Shin HY, Hesseling P, Stiller CA (eds) International incidence of childhood cancer, vol III. International Agency for Research on Cancer, Lyon (In press). https://seer.cancer.gov/iccc/iccc-iarc-2017.html. Accessed 02 May 2021

  23. Ericsson Y, Hardwick L (1978) Individual diagnosis, prognosis and counselling for caries prevention. Caries Res 12:94–102. https://doi.org/10.1159/000260369

    Article  PubMed  Google Scholar 

  24. Falcão DP, de Mota LMH, Pires AL, Bezerra ACB (2013) Sialometria: aspectos de interesse clínico. Rev Bras Reumatol 53:525–531. https://doi.org/10.1016/j.rbr.2013.03.001

    Article  PubMed  Google Scholar 

  25. Casarin RC, Peloso Ribeiro ED, Sallum EA, Nociti FH Jr, Gonçalves RB, Casati MZ (2012) The combination of amoxicillin and metronidazole improves clinical and microbiologic results of one-stage, full-mouth, ultrasonic debridement in aggressive periodontitis treatment. J Periodontol 83:988–998. https://doi.org/10.1902/jop.2012.110513

    Article  PubMed  Google Scholar 

  26. Ainamo J, Bay I (1975) Problems and proposals for recording gingivitis and plaque. Int Dent J 25:229–235

    PubMed  Google Scholar 

  27. Longo BC, Popiolek IM, Vale NG, ALCA R, MDB S (2021) Epidemiological study of childhood and adolescent cancer in Cascavel cancer hospital UOPECCAN between 2000 and 2014. Rev Bras Cancerol 67:e-201224. https://doi.org/10.32635/2176-9745.RBC.2021v67n3.1224

    Article  Google Scholar 

  28. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A (2014) Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 64:83–103. https://doi.org/10.3322/caac.21219

    Article  PubMed  Google Scholar 

  29. Da Silva DB, Pires M, Nassar SM (2002) Câncer pediátrico: análise de um registro hospitalar. J Pediatr 78:409–414. https://doi.org/10.1590/S0021-75572002000500012

    Article  Google Scholar 

  30. Little J (1999) Epidemiology of childhood cancer. IARC Scientific Publications No. 149, Oxford

  31. Mataki S (1981) Comparison of the effect of colchicine and vinblastine on the inhibition of dentinogenesis in rat incisors. Arch Oral Biol 26:955–961. https://doi.org/10.1016/0003-9969(81)90103-5

    Article  PubMed  Google Scholar 

  32. Lyaruu DM, van Duin MA, Bervoets TJM, Wöltgens JHM, Bronckers ALJJ (1997) Effects of actinomycin D on developing hamster molar tooth germs in vitro. Eur J Oral Sci 105:52–58. https://doi.org/10.1111/j.1600-0722.1997.tb00180.x

    Article  PubMed  Google Scholar 

  33. Jones TE, Henderson JS 3rd, Johnson RB (2005) Effects of doxorubicin on human dental pulp cells in vitro. Cell Biol Toxicol 21:207–214. https://doi.org/10.1007/s10565-005-0165-7

    Article  PubMed  Google Scholar 

  34. Sonis AL, Tarbell N, Valachovic RW, Gelber R, Schwenn M, Sallan S (1990) Dentofacial development in long-term survivors of acute lymphoblastic leukemia. A comparison of three treatment modalities. Cancer 15:2645–2652

    Article  Google Scholar 

  35. Seremidi K, Kloukos D, Polychronopoulou A, Kattamis A, Kavvadia K (2019) Late effects of chemo and radiation treatment on dental structures of childhood cancer survivors. A systematic review and meta-analysis. Head Neck 41:3422–3433. https://doi.org/10.1002/hed.25840

    Article  PubMed  Google Scholar 

  36. Söder B, Yakob M, Meurman JH, Andersson LC, Söder PÖ (2012) The association of dental plaque with cancer mortality in Sweden. A longitudinal study. BMJ Open 11:e001083. https://doi.org/10.1136/bmjopen-2012-001083

    Article  Google Scholar 

  37. Kinane DF, Stathopoulou PG, Papapanou PN (2017) Periodontal diseases. Nat Rev Dis Primers 22:17038. https://doi.org/10.1038/nrdp.2017.38

    Article  Google Scholar 

  38. Duggal MS, Curzon ME, Bailey CC, Lewis IJ, Prendergast M (1997) Dental parameters in the long-term survivors of childhood cancer compared with siblings. Oral Oncol 33:348–353. https://doi.org/10.1016/s1368-8375(97)89103-8

    Article  PubMed  Google Scholar 

  39. Sonis ST, Elting LS, Keefe D et al (2004) Mucositis study section of the multinational association for supportive care in cancer; international society for oral oncology. Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 1:1995–2025. https://doi.org/10.1002/cncr.20162

    Article  Google Scholar 

  40. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144. https://doi.org/10.1111/j.1600-051x.1998.tb02419.x

    Article  PubMed  Google Scholar 

  41. Thurnheer T, Karygianni L, Flury M, Belibasakis GN (2019) Fusobacterium species and subspecies differentially affect the composition and architecture of supra- and subgingival biofilms models. Front Microbiol 10:1716. https://doi.org/10.3389/fmicb.2019.01716

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brennan CA, Garrett WS (2019) Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol 17:156–166. https://doi.org/10.1038/s41579-018-0129-6

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gursoy UK, Könönen E, Uitto VJ (2008) Intracellular replication of fusobacteria requires new actin filament formation of epithelial cells. APMIS 116:1063–1070. https://doi.org/10.1111/j.1600-0463.2008.00868.x

    Article  PubMed  Google Scholar 

  44. Gursoy UK, Pöllänen M, Könönen E, Uitto VJ (2010) Biofilm formation enhances the oxygen tolerance and invasiveness of Fusobacterium nucleatum in an oral mucosa culture model. J Periodontol 81:1084–1091. https://doi.org/10.1902/jop.2010.090664

    Article  PubMed  Google Scholar 

  45. Kostic AD, Gevers D, Pedamallu CS et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298. https://doi.org/10.1101/gr.126573.111

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mitsuhashi K, Nosho K, Sukawa Y et al (2015) Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget 30:7209–7220. https://doi.org/10.18632/oncotarget.3109

    Article  Google Scholar 

  47. Yamamura K, Izumi D, Kandimalla R et al (2019) Intratumoral Fusobacterium nucleatum levels predict therapeutic response to neoadjuvant chemotherapy in esophageal squamous cell carcinoma. Clin Cancer Res 15:6170–6179. https://doi.org/10.1158/1078-0432

    Article  Google Scholar 

  48. Parhi L, Alon-Maimon T, Sol A et al (2020) Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun 26:3259. https://doi.org/10.1038/s41467-020-16967-2

    Article  Google Scholar 

  49. Dadashi M, Hajikhani B, Faghihloo E et al (2021) Proliferative effect of fada recombinant protein from Fusobacterium nucleatum on sw480 colorectal cancer cell line. Infect Disord Drug Targets 21:623–628. https://doi.org/10.2174/1871526520666200720113004

    Article  PubMed  Google Scholar 

  50. Liu Y, Baba Y, Ishimoto T et al (2021) Fusobacterium nucleatum confers chemoresistance by modulating autophagy in oesophageal squamous cell carcinoma. Br J Cancer 124:963–974. https://doi.org/10.1038/s41416-020-01198-5

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Bruna C. Longo, Isabel B. Rohling, Pauline L. M. O. E. Silva, Maria E. F. de Morais, Hélvis E. S. Paz, Renato C. V. Casarin, Sheila A. B. Nishiyama, Maria Daniela B. de Souza, and Cléverson O. Silva. The first draft of the manuscript was written by Bruna C. Longo, and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cléverson O. Silva.

Ethics declarations

Ethics approval and consent to participate

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee for Human Research of State University of Western Parana (UNIOESTE) (CAAE 4.244.416) and the Ethics Committee of the UOPECCAN Hospital (121/2020). Informed consent was obtained from all individual participants included in the study.

Consent for publication

This article does not include details, images, or videos of the participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longo, B.C., Rohling, I.B., Silva, P.L.M.O.E. et al. Antineoplastic therapy in childhood cancer patients presents a negative impact in the periodontal tissues: a cohort study. Clin Oral Invest 27, 6637–6644 (2023). https://doi.org/10.1007/s00784-023-05270-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-05270-1

Keywords

Navigation