Skip to main content

Advertisement

Log in

Enhanced effect of a novel bioactive glass–ceramic for dental application

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Dental caries is the most common chronic disease in humans, caused by the acid produced by the microflora in the mouth that dissolves the enamel minerals. Bioactive glass (BAG) has been used in various clinical applications due to its unique bioactive properties, such as bone graft substitutes and dental restorative composites. In this study, we introduce a novel bioactive glass–ceramic (NBGC) prepared through a sol–gel process under a water-free condition.

Materials and methods

The anti-demineralization and remineralization effects of NBGC were evaluated by comparing the measurements of bovine enamel surface morphology, surface roughness, surface micro-hardness, enamel elements, and mineral content before and after related treatments with a commercial BAG. The antibacterial effect was characterized by minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC).

Results

Results showed that NBGC had greater acid resistance and remineralization potential compared to commercial BAG. The fast formation of a hydroxy carbonate apatite (HCA) layer suggests efficient bioactivity.

Clinical relevance

In addition to its antibacterial properties, NBGC shows promise as an ingredient in oral care products that can prevent demineralization and restore enamel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5:117–141. https://doi.org/10.1002/JBM.820050611

    Article  Google Scholar 

  2. Combes C, Rey C (2010) Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 6:3362–3378. https://doi.org/10.1016/J.ACTBIO.2010.02.017

    Article  PubMed  Google Scholar 

  3. Tschoppe P, Zandim DL, Martus P, Kielbassa AM (2011) Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J Dent 39:430–437. https://doi.org/10.1016/J.JDENT.2011.03.008

    Article  PubMed  Google Scholar 

  4. Hench LL, LaTorre GP, Andersson ÖH (1991) The Kinetics of bioactive ceramics part iii: surface reactions for bioactive glasses compared with an inactive glass. In: Bioceramics. Butterworth-Heinemann, pp 155–162. https://doi.org/10.1016/B978-0-7506-0269-3.50025-6

  5. Jones JR (2013) Review of bioactive glass: from hench to hybrids. Acta Biomater 9:4457–4486. https://doi.org/10.1016/J.ACTBIO.2012.08.023

    Article  PubMed  Google Scholar 

  6. Van Oirschot BAJA, Alghamdi HS, Närhi TO et al (2014) In vivo evaluation of bioactive glass-based coatings on dental implants in a dog implantation model. Clin Oral Implants Res 25:21–28. https://doi.org/10.1111/CLR.12060

    Article  PubMed  Google Scholar 

  7. Westhauser F, Weis C, Prokscha M et al (2016) Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo. J Mater Sci Mater Med 27:1–7. https://doi.org/10.1007/S10856-016-5732-3

  8. Filho OP, La Torre GP, Hench LL (1996) Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res 30:509–514. https://doi.org/10.1002/(SICI)1097-4636(199604)30:43.0.CO;2-T

  9. Wilson J, Pigott GH, Schoen FJ, Hench LL (1981) Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 15:805–817. https://doi.org/10.1002/JBM.820150605

    Article  PubMed  Google Scholar 

  10. Frankel GS, Vienna JD, Lian J et al (2018) A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. Npj Mater Degrad 21(2):1–17. https://doi.org/10.1038/s41529-018-0037-2

    Article  Google Scholar 

  11. Wu C, Fan W, Gelinsky M et al (2011) Bioactive SrO–SiO2 glass with well-ordered mesopores: Characterization, physiochemistry and biological properties. Acta Biomater 7:1797–1806. https://doi.org/10.1016/J.ACTBIO.2010.12.018

    Article  PubMed  Google Scholar 

  12. Yadav VS, Narula SC, Sharma RK et al (2011) Clinical evaluation of guided tissue regeneration combined with autogenous bone or autogenous bone mixed with bioactive glass in intrabony defects. J Oral Sci 53:481–488. https://doi.org/10.2334/josnusd.53.481

    Article  PubMed  Google Scholar 

  13. Froum SJ, Weinberg MA, Tarnow D (1998) Comparison of bioactive glass synthetic bone graft particles and open debridement in the treatment of human periodontal defects. A clinical study J Periodontol 69:698–709. https://doi.org/10.1902/JOP.1998.69.6.698

    Article  PubMed  Google Scholar 

  14. Macedo NL de, Matuda F da S, Macedo LGS de et al (2004) Bone defect regeneration with bioactive glass implantation in rats. J Appl Oral Sci 12:137–143. https://doi.org/10.1590/S1678-77572004000200011

  15. Fernando D, Attik N, Pradelle-Plasse N et al (2017) Bioactive glass for dentin remineralization: a systematic review. Mater Sci Eng C Mater Biol Appl 76:1369–1377. https://doi.org/10.1016/J.MSEC.2017.03.083

    Article  PubMed  Google Scholar 

  16. Greenspan DC (2010) NovaMin and tooth sensitivity–an overview. J Clin Dent 21:61–65

    PubMed  Google Scholar 

  17. Jones JR, Brauer DS, Hupa L, Greenspan DC (2016) Bioglass and bioactive glasses and their impact on healthcare. Int J Appl Glas Sci 7:423–434. https://doi.org/10.1111/IJAG.12252

    Article  Google Scholar 

  18. Baino F, Hamzehlou S, Kargozar S (2018) Bioactive glasses: where are we and where are we going? J Funct Biomater 2018, Vol 9. Page 25(9):25. https://doi.org/10.3390/JFB9010025

    Article  Google Scholar 

  19. Zafar MS, Farooq I, Awais M et al (2019) Bioactive surface coatings for enhancing osseointegration of dental implants. In: Biomedical, therapeutic and clinical applications of bioactive glasses. Woodhead Publishing, pp 313–329. https://doi.org/10.1016/B978-0-08-102196-5.00011-2

  20. Stanley HR, Hench LL, Bennett CGJ et al (1981) The implantation of natural tooth form bioglass in baboons–long term results. Implantologist 2:26–36

    PubMed  Google Scholar 

  21. Modh H, Sequeira V, Belur A et al (2018) Newer Trends in endodontic treatment: a review. IOSR J Dent Med Sci 17:2279–861. https://doi.org/10.9790/0853-1701101416

  22. Alhashimi RA, Mannocci F, Sauro S (2017) Bioactivity, cytocompatibility and thermal properties of experimental bioglass-reinforced composites as potential root-canal filling materials. J Mech Behav Biomed Mater 69:355–361. https://doi.org/10.1016/J.JMBBM.2017.01.022

    Article  PubMed  Google Scholar 

  23. Da Cruz LPD, Hill RG, Chen X, Gillam DG (2018) Dentine tubule occlusion by novel bioactive glass-based toothpastes. Int J Dent 2018:10. https://doi.org/10.1155/2018/5701638

  24. Farmakis ETR, Beer F, Kozyrakis K et al (2013) The influence of different power settings of Nd:YAG laser irradiation, bioglass and combination to the occlusion of dentinal tubules. Photomed Laser Surg 31:54–58. https://doi.org/10.1089/PHO.2012.3333

    Article  PubMed  Google Scholar 

  25. Abbassy MA, Bakry AS, Almoabady EH et al (2021) Characterization of a novel enamel sealer for bioactive remineralization of white spot lesions. J Dent 109:103663. https://doi.org/10.1016/J.JDENT.2021.103663

  26. The effect of bioactive glasses on enamel remineralization: A systematic review | Pocket Dentistry. https://pocketdentistry.com/the-effect-of-bioactive-glasses-on-enamel-remineralization-a-systematic-review/#:~:text=Fluoride has formed the mainstay of enamel remineralization,demineralization by forming fluorapatite on the ename. Accessed 8 Feb 2021

  27. Bakry AS, Abbassy MA (2019) The efficacy of a bioglass (45S5) paste temporary filling used to remineralize enamel surfaces prior to bonding procedures. J Dent 85:33–38. https://doi.org/10.1016/J.JDENT.2019.04.010

    Article  PubMed  Google Scholar 

  28. Aboulnaga M, Hassanien O, JOURNAL AY-D, 2018 U (2018) Effect of NovaMin application with/ without polyacrylic acid-bioactivE glass air abrasion on the remineralization of demineralized enamel lesion: an in vitro study. Dent J 64:1–9

  29. Burwell AK, Litkowski LJ, Greenspan DC (2009) Calcium sodium phosphosilicate (NovaMin): remineralization potential. Adv Dent Res 21:35–39. https://doi.org/10.1177/0895937409335621

    Article  PubMed  Google Scholar 

  30. Jena A, Kala S, Shashirekha G (2017) Comparing the effectiveness of four desensitizing toothpastes on dentinal tubule occlusion: a scanning electron microscope analysis. J Conserv Dent 20:269. https://doi.org/10.4103/JCD.JCD_34_17

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hoppe A, Jokic B, Janackovic D et al (2014) Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl Mater Interfaces 6:2865–2877. https://doi.org/10.1021/AM405354Y

    Article  PubMed  Google Scholar 

  32. Rokaya D, Srimaneepong V, Sapkota J et al (2018) Polymeric materials and films in dentistry: An overview. J Adv Res 14:25–34. https://doi.org/10.1016/J.JARE.2018.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kapoor S, Goel A, Tilocca A et al (2014) Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomater 10:3264–3278. https://doi.org/10.1016/J.ACTBIO.2014.03.033

    Article  PubMed  Google Scholar 

  34. Saeki K, Marshall GW, Gansky SA et al (2016) Strontium effects on root dentin tubule occlusion and nanomechanical properties. Dent Mater 32:240–251. https://doi.org/10.1016/J.DENTAL.2015.11.020

    Article  PubMed  Google Scholar 

  35. Thuy TT, Nakagaki H, Kato K et al (2008) Effect of strontium in combination with fluoride on enamel remineralization in vitro. Arch Oral Biol 53:1017–1022. https://doi.org/10.1016/J.ARCHORALBIO.2008.06.005

    Article  PubMed  Google Scholar 

  36. Groh D, Döhler F, Brauer DS (2014) Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation. Acta Biomater 10:4465–4473. https://doi.org/10.1016/J.ACTBIO.2014.05.019

    Article  PubMed  Google Scholar 

  37. Liao Y, Zhong Y, Deng R, Dong H (2013) A kind of biological activated glass ceramic material and preparation method thereof and the application in oral care implement. 18

  38. Lasemi E, Hossain M, Motamedi K et al (2017) Effects of different times of glutaraldehyde 2% on Bacillus subtilis Spores (In Vitro). Hosp Pract Res 2:118–121. https://doi.org/10.15171/hpr.2017.28

  39. Aydın B, Pamir T, Baltaci A et al (2015) Effect of storage solutions on microhardness of crown enamel and dentin. Eur J Dent 9:262–266. https://doi.org/10.4103/1305-7456.156848

    Article  PubMed  PubMed Central  Google Scholar 

  40. Amaechi BT, Higham SM, Michael Edgar W (1999) Caries inhibiting and remineralizing effect of xylitol in vitro. J Oral Sci 41:71–76

    Article  PubMed  Google Scholar 

  41. Swarup J, Rao A (2012) Enamel surface remineralization: using synthetic nanohydroxyapatite. Contemp Clin Dent 3:433. https://doi.org/10.4103/0976-237X.107434

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kiesow A, Menzel M, Lippert F et al (2022) (2022) Dentin tubule occlusion by a 38% silver diamine fluoride gel: an in vitro investigation. BDJ Open 81(8):1–5. https://doi.org/10.1038/s41405-022-00095-8

    Article  Google Scholar 

  43. Wongkhantee S, Patanapiradej V, Maneenut C, Tantbirojn D (2006) Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J Dent 34:214–220. https://doi.org/10.1016/J.JDENT.2005.06.003

    Article  PubMed  Google Scholar 

  44. Rajesh KS, Hedge S, Kumar A, Shetty DG (2012) Evaluation of the efficacy of a 5% calcium sodium phosphosilicate (Novamin) containing dentifrice for the relief of dentinal hypersensitivity: a clinical study. Indian J Dent Res 23:363–367. https://doi.org/10.4103/0970-9290.102228

    Article  PubMed  Google Scholar 

  45. van der Veen MH, de Josselin de Jong E (2000) Application of quantitative light-induced fluorescence for assessing early caries lesions. Monogr Oral Sci 17:144–162. https://doi.org/10.1159/000061639

  46. Kim B-I (2019) Quantitative Light-induced fluorescence. Detection and Assessment of Dental Caries. Springer International Publishing, Cham, pp 159–170

    Chapter  Google Scholar 

  47. Kühnisch J, Heinrich-weltzien R (2004) Quantitative light-induced fluorescence ( QLF ) - a literature review. Int J Comput Dent 7:325–338

    PubMed  Google Scholar 

  48. Hannig C, Hannig M (2010) Natural enamel wear - a physiological source of hydroxylapatite nanoparticles for biofilm management and tooth repair? Med Hypotheses 74:670–672. https://doi.org/10.1016/j.mehy.2009.11.007

    Article  PubMed  Google Scholar 

  49. Yoon S (2015) Supporting Remineralization Dimens Dent Hyg 13(38):40–42

    Google Scholar 

  50. Carey CM (2014) Focus on fluorides: update on the use of fluoride for the prevention of dental caries. J Evid Based Dent Pract 14(Suppl):95–102. https://doi.org/10.1016/j.jebdp.2014.02.004

    Article  PubMed  Google Scholar 

  51. Al-Khateeb S, Exterkate R, Angmar-Månsson B, Ten Cate B (2000) Effect of acid-etching on remineralization of enamel white spot lesions. Acta Odontol Scand 58:31–36. https://doi.org/10.1080/000163500429406

    Article  PubMed  Google Scholar 

  52. Willmot D (2008) White spot lesions after orthodontic treatment. Semin Orthod 14:209–219. https://doi.org/10.1053/j.sodo.2008.03.006

    Article  Google Scholar 

  53. Bock NC, Seibold L, Heumann C et al (2017) Changes in white spot lesions following post-orthodontic weekly application of 1.25 per cent fluoride gel over 6 months-a randomized placebo-controlled clinical trial. Part I: photographic data evaluation. Eur J Orthod 39:134–143. https://doi.org/10.1093/ejo/cjw060

    Article  PubMed  Google Scholar 

  54. Gazge N (2018) Bioactive materials in dentistry: a groundbreaking review. https://dentalreach.today/what-is-bioactive-dentistry-a-review/. Accessed 17 Nov 2020

  55. Mneimne M, Hill RG, Bushby AJ, Brauer DS (2011) High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomater 7:1827–1834. https://doi.org/10.1016/J.ACTBIO.2010.11.037

    Article  PubMed  Google Scholar 

  56. Shah FA (2016) Fluoride-containing bioactive glasses: glass design, structure, bioactivity, cellular interactions, and recent developments. Mater Sci Eng C 58:1279–1289. https://doi.org/10.1016/J.MSEC.2015.08.064

    Article  Google Scholar 

  57. Gul H, Zahid S, Zahid S et al (2018) Sol-gel derived fluoride-doped bioactive glass powders: structural and long-term fluoride release/pH analysis. J Non Cryst Solids 498:216–222. https://doi.org/10.1016/J.JNONCRYSOL.2018.06.025

    Article  Google Scholar 

  58. Tirapelli C, Panzeri H, Soares RG et al (2010) A novel bioactive glass-ceramic for treating dentin hypersensitivity. Braz Oral Res 24:381–387. https://doi.org/10.1590/S1806-83242010000400002

    Article  PubMed  Google Scholar 

  59. Al-Khafaji TJ, Wong F, Fleming PS et al (2019) Novel fluoride and strontium-containing bioactive glasses for dental varnishes-design and bioactivity in Tris buffer solution. J Non Cryst Solids 503–504:120–130. https://doi.org/10.1016/j.jnoncrysol.2018.09.037

    Article  Google Scholar 

  60. Loesche WJ (1992) The specific plaque hypothesis and the antimicrobial treatment of periodontal disease. Dent Update 19:68, 70–72, 74

  61. Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8:263–271. https://doi.org/10.1177/08959374940080022001

    Article  PubMed  Google Scholar 

  62. Theilade E (1986) The non-specific theory in microbial etiology of inflammatory periodontal diseases. J Clin Periodontol 13:905–911. https://doi.org/10.1111/J.1600-051X.1986.TB01425.X

    Article  PubMed  Google Scholar 

  63. Liu J, Rawlinson SCF, Hill RG, Fortune F (2016) Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects. Dent Mater 32:412–422. https://doi.org/10.1016/J.DENTAL.2015.12.013

    Article  PubMed  Google Scholar 

  64. Pretty IA, Edgar WM, Higham SM (2004) The validation of quantitative light-induced fluorescence to quantify acid erosion of human enamel. Arch Oral Biol 49:285–294. https://doi.org/10.1016/j.archoralbio.2003.11.008

    Article  PubMed  Google Scholar 

  65. ten Cate JM, Duijsters PPE (1983) Influence of fluoride in solution on tooth demineralization. Caries Res 17:193–199. https://doi.org/10.1159/000260667

    Article  PubMed  Google Scholar 

  66. Al-Salehi SK, Wood DJ, Hatton PV (2007) The effect of 24 h non-stop hydrogen peroxide concentration on bovine enamel and dentine mineral content and microhardness. J Dent 35:845–850. https://doi.org/10.1016/J.JDENT.2007.08.001

  67. Potocnik I, Kosec L, Gaspersic D (2000) Effect of 10% Carbamide peroxide bleaching gel on enamel microhardness, microstructure, and mineral content. J Endod 26:203–206. https://doi.org/10.1097/00004770-200004000-00001

  68. Lee KH, Kim HI, Kim KH, Kwon YH (2006) Mineral loss from bovine enamel by a 30% hydrogen peroxide solution. J Oral Rehabil 33:229–233. https://doi.org/10.1111/j.1365-2842.2004.01360.x

    Article  PubMed  Google Scholar 

  69. Osorio E, Fagundes T, Navarro MF et al (2015) A novel bioactive agent improves adhesion of resin-modified glass-ionomer to dentin. J Adhesion Sci Technol 29:1543–1552. https://doi.org/10.1080/01694243.2015.1030897

    Article  Google Scholar 

  70. Chatzistavrou X, Velamakanni S, Direnzo K et al (2015) Designing dental composites with bioactive and bactericidal properties. Mater Sci Eng C Mater Biol Appl 52:267–272. https://doi.org/10.1016/J.MSEC.2015.03.062

    Article  PubMed  Google Scholar 

  71. Bertassoni LE, Habelitz S, Kinney JH et al (2009) Biomechanical perspective on the remineralization of dentin. Caries Res 43:70–77. https://doi.org/10.1159/000201593

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pugach MK, Strother J, Darling CL et al (2009) Dentin caries zones: Mineral, structure, and properties. J Dent Res 88:71–76. https://doi.org/10.1177/0022034508327552

    Article  PubMed  PubMed Central  Google Scholar 

  73. Palmer LC, Newcomb CJ, Kaltz SR et al (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 108:4754–4783. https://doi.org/10.1021/cr8004422

    Article  PubMed  PubMed Central  Google Scholar 

  74. Guentsch A, Busch S, Seidler K et al (2010) Biomimetic mineralization: effects on human enamel in vivo. Adv Eng Mater 12:B571–B576. https://doi.org/10.1002/ADEM.201080008

    Article  Google Scholar 

  75. Shao C, Jin B, Mu Z et al (2019) Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. Sci Adv 5:eaaw9569. https://doi.org/10.1126/SCIADV.AAW9569

Download references

Acknowledgements

We thank Mr. Xiongying Wang for his training on profilometer and EDS.

Funding

This project was supported in part by the 2019 Chongqing Graduate Mentor Team Funding (Grant No. dstd201903).

Author information

Authors and Affiliations

Authors

Contributions

Lin Qiu, Yu Lu, Haide Dong, Huan Zhang, Min Zhang, Quanfu Deng, and Jinlin Song conceived and designed the experiments; Lin Qiu performed the demineralization and remineralization experiments, Yu Lu performed the antibacterial experiment and Haide Dong fabricated the NBGC and did the XRD analysis; Lin Qiu analyzed the data together with Quanfu Deng and Jinlin Song; Lin Qiu drafted the paper and Huan Zhang, Min Zhang, Quanfu Deng, and Jinlin Song edited the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lin Qiu, Quanfu Deng or Jinlin Song.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Lu, Y., Dong, H. et al. Enhanced effect of a novel bioactive glass–ceramic for dental application. Clin Oral Invest 27, 2027–2040 (2023). https://doi.org/10.1007/s00784-023-04946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-04946-y

Keywords

Navigation