Skip to main content

Advertisement

Log in

Accuracy assessment of dynamic computer–aided implant placement: a systematic review and meta-analysis

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To assess the accuracy of dynamic computer–aided implant surgery (dCAIS) systems when used to place dental implants and to compare its accuracy with static computer–aided implant surgery (sCAIS) systems and freehand implant placement.

Materials and Methods

An electronic search was made to identify all relevant studies reporting on the accuracy of dCAIS systems for dental implant placement. The following PICO question was developed: “In patients or artificial models, is dental implant placement accuracy higher when dCAIS systems are used in comparison with sCAIS systems or with freehand placement? The main outcome variable was angular deviation between the central axes of the planned and final position of the implant. The data were extracted in descriptive tables, and a meta-analysis of single means was performed in order to estimate the deviations for each variable using a random-effects model.

Results

Out of 904 potential articles, the 24 selected assessed 9 different dynamic navigation systems. The mean angular and entry 3D global deviations for clinical studies were 3.68° (95% CI: 3.61 to 3.74; I2 = 99.4%) and 1.03 mm (95% CI: 1.01 to 1.04; I2 = 82.4%), respectively. Lower deviation values were reported in in vitro studies (mean angular deviation of 2.01° (95% CI: 1.95 to 2.07; I2 = 99.1%) and mean entry 3D global deviation of 0.46 mm (95% CI: 0.44 to 0.48 ; I2 = 98.5%). No significant differences were found between the different dCAIS systems. These systems were significantly more accurate than sCAIS systems (mean difference (MD): −0.86°; 95% CI: −1.35 to −0.36) and freehand implant placement (MD: −4.33°; 95% CI: −5.40 to −3.25).

Conclusion

dCAIS systems allow highly accurate implant placement with a mean angular of less than 4°. However, a 2-mm safety margin should be applied, since deviations of more than 1 mm were observed. dCAIS systems increase the implant placement accuracy when compared with freehand implant placement and also seem to slightly decrease the angular deviation in comparison with sCAIS systems.

Clinical Relevance

The use of dCAIS could reduce the rate of complications since it allows a highly accurate implant placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moraschini V, Poubel LADC, Ferreira VF, Barboza EDSP (2015) Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Maxillofac Surg 44:377–388. https://doi.org/10.1016/j.ijom.2014.10.023

    Article  PubMed  Google Scholar 

  2. Chrcanovic BR, Albrektsson T, Wennerberg A (2014) Reasons for failures of oral implants. J Oral Rehabil 41:443–476. https://doi.org/10.1111/joor.12157

    Article  PubMed  Google Scholar 

  3. Romanos GE, Delgado-Ruiz R, Sculean A (2019) Concepts for prevention of complications in implant therapy. Periodontol 81:7–17. https://doi.org/10.1111/prd.12278

    Article  Google Scholar 

  4. Greenstein G, Cavallaro J, Romanos G, Tarnow D (2008) Clinical recommendations for avoiding and managing surgical complications associated with implant dentistry: a review. J Periodontol 79:1317–1329. https://doi.org/10.1080/17453674.2019.1690339

    Article  PubMed  Google Scholar 

  5. Hämmerle CHF, Tarnow D (2018) The etiology of hard- and soft-tissue deficiencies at dental implants: A narrative review. J Periodontol 89:291–303. https://doi.org/10.1002/JPER.16-0810

    Article  Google Scholar 

  6. Martin W, Pollini A, Morton D (2014) The influence of restorative procedures on esthetic outcomes in implant dentistry: a systematic review. Int J Oral Maxillofac Implants 29:142–154. https://doi.org/10.11607/jomi.2014suppl.g3.1.

  7. Buser D, Martin W, Belser UC (2004) Optimizing esthetics for implant restorations in the anterior maxilla: anatomic and surgical considerations. Int J Oral Maxillofac Implants 19:43–46

    PubMed  Google Scholar 

  8. Clark D, Barbu H, Lorean A, Mijiritsky E, Levin L (2017) Incidental findings of implant complications on postimplantation CBCTs: a cross-sectional study. Clin Implant Dent Relat Res 19:776–782. https://doi.org/10.1111/cid.12511

    Article  PubMed  Google Scholar 

  9. Gaêta-Araujo H, Oliveira-Santos N, Mancini AXM, Oliveira ML, Oliveira-Santos C (2020) Retrospective assessment of dental implant-related perforations of relevant anatomical structures and inadequate spacing between implants/teeth using cone-beam computed tomography. Clin Oral Investig 4:3281–3288. https://doi.org/10.1007/s00784-020-03205-8

    Article  Google Scholar 

  10. Jacobs R, Salmon B, Codari M, Hassan B, Bornstein MM (2018) Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Health 18:1–16. https://doi.org/10.1186/s12903-018-0523-5

    Article  Google Scholar 

  11. Benavides E, Rios HF, Ganz SD et al (2012) Use of cone beam computed tomography in implant dentistry: the International Congress of Oral Implantologists consensus report. Implant Dent 21:78–86. https://doi.org/10.1097/ID.0b013e31824885b5

    Article  PubMed  Google Scholar 

  12. Guerrero ME, Jacobs R, Loubele M, Schutyser F, Suetens P, van Steenberghe D (2006) State-of-the-art on cone beam CT imaging for preoperative planning of implant placement. Clin Oral Investig 10:1–7. https://doi.org/10.1007/s00784-005-0031-2

    Article  PubMed  Google Scholar 

  13. Hammerle CHF, Stone P, Jung RE, Kapos T, Brodala N (2009) Consensus statements and recommended clinical procedures regarding computer-assisted implant dentistry. Int J Oral Maxillofac Implants 24:126–131

    PubMed  Google Scholar 

  14. Jung RE, Schneider D, Ganeles J et al (2009) Computer technology applications in surgical implant dentistry: a systematic review. Int J Oral Maxillofac Implants 24:92–109

    PubMed  Google Scholar 

  15. Vercruyssen M, Fortin T, Widmann G, Jacobs R, Quirynen M (2014) Different techniques of static/dynamic guided implant surgery: modalities and indications. Periodontol 66:214–227. https://doi.org/10.1111/prd.12056

    Article  Google Scholar 

  16. Block MS, Emery RW (2016) Static or dynamic navigation for implant placement-choosing the method of guidance. J Oral Maxillofac Surg 74:269–277. https://doi.org/10.1016/j.joms.2015.09.022

    Article  PubMed  Google Scholar 

  17. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:332–336. https://doi.org/10.1136/bmj.b2535

    Article  Google Scholar 

  18. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ WV. (2019) Cochrane handbook for systematic reviews of interventions version 6.0 (updated July 2019).

  19. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P (2011) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.

  20. Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  Google Scholar 

  21. Kang S-H, Lee J-W, Lim S-H, Kim Y-H, Kim M-K (2014) Verification of the usability of a navigation method in dental implant surgery: in vitro comparison with the stereolithographic surgical guide template method. J Craniomaxillofac Surg 42(7):1530–1535. https://doi.org/10.1016/j.jcms.2014.04.025

    Article  PubMed  Google Scholar 

  22. Jokstad A, Winnett B, Fava J, Powell D, Somogyi-Ganss E (2018) Investigational clinical trial of a prototype optoelectronic computer-aided navigation device for dental implant surgery. Int J Oral Maxillofac Implants 33:679–692. https://doi.org/10.11607/jomi.6351

    Article  PubMed  Google Scholar 

  23. Chen Y-T, Chiu Y-W, Peng C-Y (2020) Preservation of inferior alveolar nerve using the dynamic dental implant navigation system. J Oral Maxillofac Surg 78:678–679. https://doi.org/10.1016/j.joms.2020.01.007

    Article  PubMed  Google Scholar 

  24. Panchal N, Mahmood L, Retana A, Emery R (2019) Dynamic navigation for dental implant surgery. Oral Maxillofac Surg Clin North Am 31:539–547. https://doi.org/10.1016/j.coms.2019.08.001

    Article  PubMed  Google Scholar 

  25. Ruoppoli A, Beltrame C, Tonoli G, Amaroli A, de Angelis N (2019) Accuracy of guided implant surgery: an experimental set-up. Minerva Stomatol 68:61–66. https://doi.org/10.23736/S0026-4970.19.04223-7

    Article  PubMed  Google Scholar 

  26. Fang Y, An X, Jeong S-M, Choi B-H (2019) Accuracy of computer-guided implant placement in anterior regions. J Prosthet Dent 121:836–842. https://doi.org/10.1016/j.prosdent.2018.07.015

    Article  PubMed  Google Scholar 

  27. Lin Z, Gao Y (2018) Application and evaluation of real-time navigation system in dental implants surgery. Basic Clin Pharmacol Toxicol 124:32

    Google Scholar 

  28. Younes F, Cosyn J, De Bruyckere T, Cleymaet R, Bouckaert E, Eghbali A (2018) A randomized controlled study on the accuracy of free-handed, pilot-drill guided and fully guided implant surgery in partially edentulous patients. J Clin Periodontol 45:721–732. https://doi.org/10.1111/jcpe.12897

    Article  PubMed  Google Scholar 

  29. Cassetta M, Bellardini M (2017) How much does experience in guided implant surgery play a role in accuracy? A randomized controlled pilot study. Int J Oral Maxillofac Surg 46:922–930. https://doi.org/10.1016/j.ijom.2017.03.010

    Article  PubMed  Google Scholar 

  30. Block MS, Emery RW, Lank K, Ryan J (2017) Implant placement accuracy using dynamic navigation. Int J Oral Maxillofac Implants 32:92–99. https://doi.org/10.11607/jomi.5004

    Article  PubMed  Google Scholar 

  31. Horwitz J, Machtei EE, Zigdon-Giladi H (2017) Clinical accuracy of a novel open-lattice-frame implant positioning system: a case series. Quintessence Int 48:33–39. https://doi.org/10.3290/j.qi.a37134

    Article  PubMed  Google Scholar 

  32. Simon Z (2015) Computer-guided implant surgery: placing the perfect implant. J Calif Dent Assoc 43:126–129

    PubMed  Google Scholar 

  33. Dreiseidler T, Neugebauer J, Ritter L et al (2009) Accuracy of a newly developed integrated system for dental implant planning. Clin Oral Implants Res 20:1191–1199. https://doi.org/10.1111/j.1600-0501.2009.01764.x

    Article  PubMed  Google Scholar 

  34. Orentlicher G, Horowitz A, Goldwaser B, Abboud M (2017) Ten myths of guided implant surgery. Compend Contin Educ Dent 38:552–557

    PubMed  Google Scholar 

  35. Casap N, Laviv A, Wexler A (2011) Computerized navigation for immediate loading of dental implants with a prefabricated metal frame: a feasibility study. J Oral Maxillofac Surg 69:512–519. https://doi.org/10.1016/j.joms.2010.10.031

    Article  PubMed  Google Scholar 

  36. Casap N, Nadel S, Tarazi E, Weiss EI (2011) Evaluation of a navigation system for dental implantation as a tool to train novice dental practitioners. J Oral Maxillofac Surg 69:2548–2556. https://doi.org/10.1016/j.joms.2011.04.026

    Article  PubMed  Google Scholar 

  37. Ganeles J, Mandelaris GA, Rosenfeld AL, Rose LF (2011) Image guidance for implants improves accuracy and predictability. Compend Contin Educ Dent 32:52–55

    PubMed  Google Scholar 

  38. Turkyilmaz I (2011) Implant dentistry - a rapidly evolving practice. InTech, London

    Book  Google Scholar 

  39. Rossi R, Morales RS, Frascaria M, Benzi R, Squadrito N (2010) Planning implants in the esthetic zone using a new implant 3D navigation system. Eur J Esthet Dent 5:172–188

    PubMed  Google Scholar 

  40. Scheyer ET, Mandelaris GA, McGuire MK, AlTakriti MA, Stefanelli LV (2020) Implant placement under dynamic navigation using trace registration: case presentations. Int J Periodontics Restorative Dent 40:e241–e248

    Article  Google Scholar 

  41. Zhan Y, Wang M, ChengX LY, Shi X, Liu F (2020) Evaluation of a dynamic navigation system for training students in dental implant placement. J Dent Educ. In press. https://doi.org/10.1002/jdd.12399

  42. Cecchetti F, Di Girolamo M, Mazza D, Ippolito G, Baggi L (2020) Computer-guided implant surgery: analysis of dynamic navigation systems and digital accuracy. J Biol Regul Homeost Agents 34:9–17

    PubMed  Google Scholar 

  43. Stefanelli LV, DeGroot BS, Lipton DI, Mandelaris GA (2019) Accuracy of a dynamic dental implant navigation system in a private practice. Int J Oral Maxillofac Implants 34:205–213. https://doi.org/10.11607/jomi.6966

    Article  PubMed  Google Scholar 

  44. Stefanelli LV, Mandelaris GA, DeGroot BS, Gambarini G, De Angelis F, Di Carlo S (2020) Accuracy of a novel trace-registration method for dynamic navigation surgery. Int J Periodontics Restor Dent 40:427–435. https://doi.org/10.1111/clr.13563

    Article  Google Scholar 

  45. Aydemir CA, Arisan V (2020) Accuracy of dental implant placement via dynamic navigation or the freehand method: a split-mouth randomized controlled clinical trial. Clin Oral Implants Res 31:255–263. https://doi.org/10.1111/clr.13563

    Article  PubMed  Google Scholar 

  46. Pellegrino G, Taraschi V, Andrea Z, Ferri A, Marchetti C (2019) Dynamic navigation: a prospective clinical trial to evaluate the accuracy of implant placement. Int J Comput Dent 22:139–147

    PubMed  Google Scholar 

  47. Kaewsiri D, Panmekiate S, Subbalekha K, Mattheos N, Pimkhaokham A (2019) The accuracy of static vs. dynamic computer-assisted implant surgery in single tooth space: a randomized controlled trial. Clin Oral Implants Res 30:505–514. https://doi.org/10.1111/clr.13435

    Article  PubMed  Google Scholar 

  48. Block MS, Emery RW, Cullum DR, Sheikh A (2017) Implant placement is more asccurate using dynamic navigation. J Oral Maxillofac Surg 75:1377–1386. https://doi.org/10.1016/j.joms.2017.02.026

    Article  PubMed  Google Scholar 

  49. Sun TM, Lee HE, Lan TH (2020) Comparing accuracy of implant installation with a navigation system (NS), a laboratory guide (LG), NS with LG, and freehand drilling. Int J Environ Res Public Health 17:2107. https://doi.org/10.3390/ijerph17062107

    Article  PubMed Central  Google Scholar 

  50. Stefanelli LV, Mandelaris GA, Franchina A et al (2020) Accuracy evaluation of 14 maxillary full arch implant treatments performed with Da Vinci bridge: a case series. Materials (Basel) 13:2806. https://doi.org/10.3390/ma13122806

    Article  Google Scholar 

  51. Stefanelli LV, Mandelaris GA, Franchina A et al (2020) Accuracy of dynamic navigation system workflow for implant supported full arch prosthesis : a case series. Int J Environ Res Public Health 17:5038. https://doi.org/10.3390/ijerph17145038

    Article  PubMed Central  Google Scholar 

  52. Yimarj P, Subbalekha K, Dhanesuan K, Siriwatana K, Mattheos N, Pimkhaokham A (2020) Comparison of the accuracy of implant position for two-implants supported fixed dental prosthesis using static and dynamic computer-assisted implant surgery: a randomized controlled clinical trial. Clin Implant Dent Relat Res. In press. https://doi.org/10.1111/cid.12949

  53. Pellegrino G, Bellini P, Cavallini PF et al (2020) Dynamic navigation in dental implantology : The influence of surgical experience on implant placement accuracy and operating time . an in vitro study. Int J Environ Res Public Health 17:2153. https://doi.org/10.3390/ijerph17062153

    Article  PubMed Central  Google Scholar 

  54. Jorba-García A, Figueiredo R, González-Barnadas A, Camps-Font O, Valmaseda-Castellón E (2019) Accuracy and the role of experience in dynamic computer guided dental implant surgery: an in-vitro study. Med Oral Patol Oral Cir Bucal 24:76–83. https://doi.org/10.4317/medoral.22785

    Article  Google Scholar 

  55. Somogyi-Ganss E, Holmes HI, Jokstad A (2015) Accuracy of a novel prototype dynamic computer-assisted surgery system. Clin Oral Implants Res 26:882–890. https://doi.org/10.1111/clr.12414

    Article  PubMed  Google Scholar 

  56. Widmann G, Keiler M, Zangerl A et al (2010) Computer-assisted surgery in the edentulous jaw based on 3 fixed intraoral reference points. J Oral Maxillofac Surg 68(5):1140–1147. https://doi.org/10.1016/j.joms.2009.10.008

    Article  PubMed  Google Scholar 

  57. Golob Deeb J, Frantar A, Deeb GR, Carrico CK, Rener-Sitar K (2020) In vitro comparison of time and accuracy of implant placement using trephine and conventional drilling techniques under dynamic navigation. J Oral Implantol. https://doi.org/10.1563/aaid-joi-D-19-00125

  58. Sun T-M, Lee H-E, Lan T-H (2019) The influence of dental experience on a dental implant navigation system. BMC Oral Health 19:222. https://doi.org/10.1186/s12903-019-0914-2

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mediavilla Guzman A, Riad Deglow E, Zubizarreta-Macho A, Agustin-Panadero R, Hernandez Montero S (2019) Accuracy of computer-aided dynamic navigation compared to computer-aided static navigation for dental implant placement: an in vitro study. J Clin Med 8:2123. https://doi.org/10.3390/jcm8122123

    Article  PubMed Central  Google Scholar 

  60. Golob Deeb J, Bencharit S, Carrico CK et al (2019) Exploring training dental implant placement using computer-guided implant navigation system for predoctoral students: a pilot study. Eur J Dent Educ 23:415–423. https://doi.org/10.1111/eje.12447

    Article  PubMed  Google Scholar 

  61. Jiang W, Ma L, Zhang B et al (2018) Evaluation of the 3D augmented reality-guided intraoperative positioning of dental implants in edentulous mandibular models. Int J Oral Maxillofac Implants 33:1219–1228. https://doi.org/10.11607/jomi.6638

    Article  PubMed  Google Scholar 

  62. Sun T-M, Lan T-H, Pan C-Y, Lee H-E (2018) Dental implant navigation system guide the surgery future. Kaohsiung J Med Sci 34:56–64. https://doi.org/10.1016/j.kjms.2017.08.011

    Article  PubMed  Google Scholar 

  63. Chen C-K, Yuh D-Y, Huang R-Y, Fu E, Tsai C-F, Chiang C-Y (2018) Accuracy of implant placement with a navigation system, a laboratory guide, and freehand drilling. Int J Oral Maxillofac Implants 33:1213–1218. https://doi.org/10.11607/jomi.6585

    Article  PubMed  Google Scholar 

  64. Emery RW, Merritt SA, Lank K, Gibbs JD (2016) Accuracy of dynamic navigation for dental implant placement-model-based evaluation. J Oral Implantol 42:399–405. https://doi.org/10.1563/aaid-joi-D-16-00025

    Article  PubMed  Google Scholar 

  65. Kim SG, Lee WJ, Lee SS et al (2015) An advanced navigational surgery system for dental implants completed in a single visit: an in vitro study. J Craniomaxillofac Surg 43:117–125. https://doi.org/10.1016/j.jcms.2014.10.022

    Article  PubMed  Google Scholar 

  66. Zhou M, Zhou H, Li SY, Zhu YB, Geng YM (2020) Comparison of the accuracy of dental implant placement using static and dynamic computer-assisted systems: an in vitro study. J Stomatol Oral Maxillofac Surg 8:S2468-7855(20)30293-7. https://doi.org/10.1016/j.jormas.2020.11.008

    Article  Google Scholar 

  67. Tahmaseb A, Wu V, Wismeijer D, Coucke W, Evans C (2018) The accuracy of static computer-aided implant surgery: a systematic review and meta-analysis. Clin Oral Implants Res 29:416–435. https://doi.org/10.1111/clr.13346

    Article  PubMed  Google Scholar 

  68. Bover-Ramos F, Vina-Almunia J, Cervera-Ballester J, Penarrocha-Diago M, Garcia-Mira B (2018) Accuracy of implant placement with computer-guided surgery: a systematic review and meta-analysis comparing cadaver, clinical, and in vitro studies. Int J Oral Maxillofac Implants 33:101–115. https://doi.org/10.11607/jomi.5556

    Article  PubMed  Google Scholar 

  69. Wang F, Bornstein MM, Hung K et al (2018) Application of real-time surgical navigation for zygomatic implant insertion in patients with severely atrophic maxilla. J Oral Maxillofac Surg 76:80–87. https://doi.org/10.1016/j.joms.2017.08.021

    Article  PubMed  Google Scholar 

  70. Feine J, Abou-Ayash S, Al Mardini M et al (2018) Group 3 ITI consensus report: patient-reported outcome measures associated with implant dentistry. Clin Oral Implants Res 29:270–275. https://doi.org/10.1111/clr.13299

    Article  PubMed  Google Scholar 

  71. Joda T, Derksen W, Wittneben JG, Kuehl S (2018) Static computer-aided implant surgery (s-CAIS) analysing patient-reported outcome measures (PROMs), economics and surgical complications: a systematic review. Clin Oral Implants Res 29:359–373. https://doi.org/10.1111/clr.13136

    Article  PubMed  Google Scholar 

  72. Pellegrino G, Mangano C, Mangano R, Ferri A, Taraschi V, Marchetti C (2019) Augmented reality for dental implantology: a pilot clinical report of two cases. BMC Oral Health 19:158. https://doi.org/10.1186/s12903-019-0853-y

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ma L, Jiang W, Zhang B et al (2019) Augmented reality surgical navigation with accurate CBCT-patient registration for dental implant placement. Med Biol Eng Comput 57:47–57. https://doi.org/10.1007/s11517-018-1861-9

    Article  PubMed  Google Scholar 

  74. Rawal S, Tillery DEJ, Brewer P (2020) Robotic-assisted prosthetically driven planning and immediate placement of a dental implant. Compend Contin Educ Dent 41:26–30

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mary Georgina Hardinge for her English language editing assistance.

Funding

The research was not supported by any source of funding.

Author information

Authors and Affiliations

Authors

Contributions

Adrià Jorba-García and Albert González-Barnadas: Conception of the review; literature search and data acquisition; article drafting; approval of the final version of the manuscript and agreement to be accountable for all aspects of the work.

Octavi Camps-Font: Conception of the review; analysis and interpretation of the data; critical review of the article; approval of the final version of the manuscript and agreement to be accountable for all aspects of the work.

Rui Figueiredo and Eduard Valmaseda-Castellón: Conception of the review; interpretation of the data; critical review of the article; approval of the final version of the manuscript and agreement to be accountable for all aspects of the work.

Corresponding author

Correspondence to Rui Figueiredo.

Ethics declarations

Ethics approval

This article does not report on any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Conflict of interest

The authors have no direct financial or other interests in the products or information mentioned in this paper. Adrià Jorba-Garcia and Albert González-Barnadas declare no conflicts of interest. Dr. Octavi Camps-Font reports grants from Avinent (Santpedor, Spain) and has participated as a sub-investigator in clinical trials sponsored by Mundipharma (Cambridge, UK) and Menarini Richerche (Florence, Italy).

Dr. Rui Figueiredo reports grants, personal fees, and non-financial support from MozoGrau (Valladolid, Spain) and from Avinent (Santpedor, Spain) and personal fees from BioHorizons Iberica (Madrid, Spain), Inibsa Dental (Lliçà de Vall, Spain), Dentsply implants Iberia (Barcelona, Spain), and ADIN Implants (Afula, Israel) outside the submitted work. Dr. Figueiredo has also participated as a principal investigator in a randomized clinical trial sponsored by Mundipharma (Cambridge, UK) and in another clinical trial as a sub-investigator for Menarini Richerche (Florence, Italy). Dr. Eduard Valmaseda-Castellón reports personal fees and non-financial support from MozoGrau (Valladolid, Spain) and from Avinent (Santpedor, Spain) and personal fees from BioHorizons Iberica (Madrid, Spain), Inibsa Dental (Lliçà de Vall, Spain), and Dentsply implants Iberia (Barcelona, Spain) outside the submitted work. In addition, Dr. Valmaseda-Castellón has also participated as a sub-investigator in a randomized clinical trial sponsored by Mundipharma (Cambridge, UK).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 65.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jorba-García, A., González-Barnadas, A., Camps-Font, O. et al. Accuracy assessment of dynamic computer–aided implant placement: a systematic review and meta-analysis. Clin Oral Invest 25, 2479–2494 (2021). https://doi.org/10.1007/s00784-021-03833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-03833-8

Keywords

Navigation