Skip to main content

Advertisement

Log in

Pre-coating deproteinized bovine bone mineral (DBBM) with bone-conditioned medium (BCM) improves osteoblast migration, adhesion, and differentiation in vitro

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Autogenous bone grafting has remained the gold standard for bone augmentation procedures with ability to release growth factors to the surrounding microenvironment. Recent investigations have characterized these specific growth factors released by autogenous bone chips with further isolation into a “bone-conditioned medium” (BCM). The aim of the present investigation was to utilize autologous growth factors from bone chips (BCM) in combination with deproteinized bovine bone mineral (DBBM) and investigate the ability for BCM to enhance osteoblast behavior.

Materials and methods

Mouse ST2 cells were seeded on (1) DBBM particles alone or (2) DBBM + BCM. Thereafter, samples were compared for cell recruitment, adhesion, proliferation, and real-time PCR for osteoblast differentiation markers including Runx2, collagen 1 alpha 2 (COL1A2), alkaline phosphatase (ALP), and osteocalcin (OCN). Alizarin red staining was used to assess mineralization.

Results

Coating BCM on DBBM particles improved cell migration of ST2 cells and significantly enhanced a 2-fold increase in cell adhesion. While no significant increase in cell proliferation was observed, BCM significantly increased mRNA levels of COL1A2, ALP, and OCN at 3 days post seeding. Furthermore, a 3-fold increase in alizarin red staining was observed on DBBM particles pre-coated with BCM.

Conclusion

Pre-coating DBBM with BCM enhanced the osteoconductive properties of DBBM by mediating osteoblast recruitment, attachment, and differentiation towards bone-forming osteoblasts. Future animal study is necessary to further characterize the added benefit of BCM as an autogenous growth factor source for combination therapies.

Clinical relevance

The application of BCM in combination with biomaterials may serve as an autogenous growth factor source for bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stern A, Barzani G (2015) Autogenous bone harvest for implant reconstruction. Dent Clin N Am 59:409–420. doi:10.1016/j.cden.2014.10.011

    Article  PubMed  Google Scholar 

  2. Miron RJ, Hedbom E, Saulacic N, Zhang Y, Sculean A, Bosshardt DD, Buser D (2011) Osteogenic potential of autogenous bone grafts harvested with four different surgical techniques. J Dent Res 90:1428–1433. doi:10.1177/0022034511422718

    Article  PubMed  Google Scholar 

  3. Jensen SS, Bosshardt DD, Gruber R, Buser D (2014) Long-term stability of contour augmentation in the esthetic zone: histologic and histomorphometric evaluation of 12 human biopsies 14 to 80 months after augmentation. J Periodontol 85:1549–1556. doi:10.1902/jop.2014.140182

    Article  PubMed  Google Scholar 

  4. Buser D, Chappuis V, Kuchler U, Bornstein MM, Wittneben JG, Buser R, Cavusoglu Y, Belser UC (2013) Long-term stability of early implant placement with contour augmentation. J Dent Res 92:176s–182s. doi:10.1177/0022034513504949

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miron RJ, Gruber R, Hedbom E, Saulacic N, Zhang Y, Sculean A, Bosshardt DD, Buser D (2013) Impact of bone harvesting techniques on cell viability and the release of growth factors of autografts. Clin Implant Dent Relat Res 15:481–489. doi:10.1111/j.1708-8208.2012.00440.x

    Article  PubMed  Google Scholar 

  6. Brolese E, Buser D, Kuchler U, Schaller B, Gruber R (2014) Human bone chips release of sclerostin and FGF-23 into the culture medium: an in vitro pilot study. Clin Oral Implants Res. doi:10.1111/clr.12432

    PubMed  Google Scholar 

  7. Caballe-Serrano J, Bosshardt DD, Buser D, Gruber R (2014) Proteomic analysis of porcine bone-conditioned medium. Int J Oral Maxillofac Implants 29:1208–115d. doi:10.11607/jomi.3708

    Article  PubMed  Google Scholar 

  8. Caballe-Serrano J, Schuldt Filho G, Bosshardt DD, Gargallo-Albiol J, Buser D, Gruber R (2015) Conditioned medium from fresh and demineralized bone enhances osteoclastogenesis in murine bone marrow cultures. Clin Oral Implants Res. doi:10.1111/clr.12573

    PubMed  Google Scholar 

  9. Sawada K, Caballe-Serrano J, Schuldt Filho G, Bosshardt DD, Schaller B, Buser D, Gruber R (2015) Thermal processing of bone: in vitro response of mesenchymal cells to bone-conditioned medium. Int J Oral Maxillofac Surg. doi:10.1016/j.ijom.2015.03.012

    PubMed  Google Scholar 

  10. Schuldt Filho G, Caballe-Serrano J, Sawada K, Bosshardt DD, Aurelio Bianchini M, Buser D and Gruber R (2015) Conditioned medium of demineralized freeze-dried bone activates gene expression in periodontal fibroblasts in vitro. J Periodontol:1–14. doi: 10.1902/jop.2015.140676

  11. Peng J, Nemec M, Brolese E, Bosshardt DD, Schaller B, Buser D, Gruber R (2014) Bone-conditioned medium Inhibits osteogenic and adipogenic differentiation of mesenchymal cells in vitro. Clin Implant Dent Relat Res. doi:10.1111/cid.12200

    PubMed  Google Scholar 

  12. Filho GS, Caballe-Serrano J, Sawada K, Bosshardt DD, Bianchini MA, Buser D, Gruber R (2015) Conditioned medium of demineralized freeze-dried bone activates gene expression in periodontal fibroblasts in vitro. J Periodontol 86:827–834. doi:10.1902/jop.2015.140676

    Article  PubMed  Google Scholar 

  13. Zimmermann M, Caballe-Serrano J, Bosshardt DD, Ankersmit HJ, Buser D, Gruber R (2015) Bone-conditioned medium changes gene expression in bone-derived fibroblasts. Int J Oral Maxillofac Implants 30:953–958. doi:10.11607/jomi.4060

    Article  PubMed  Google Scholar 

  14. Miron RJ, Bosshardt DD, Hedbom E, Zhang Y, Haenni B, Buser D, Sculean A (2012) Adsorption of enamel matrix proteins to a bovine-derived bone grafting material and its regulation of cell adhesion, proliferation, and differentiation. J Periodontol 83:936–947. doi:10.1902/jop.2011.110480

    Article  PubMed  Google Scholar 

  15. Miron RJ, Bosshardt DD, Zhang Y, Buser D, Sculean A (2013) Gene array of primary human osteoblasts exposed to enamel matrix derivative in combination with a natural bone mineral. Clin Oral Investig 17:405–410. doi:10.1007/s00784-012-0742-0

    Article  PubMed  Google Scholar 

  16. Miron RJ, Saulacic N, Buser D, Iizuka T, Sculean A (2013) Osteoblast proliferation and differentiation on a barrier membrane in combination with BMP2 and TGFbeta1. Clin Oral Investig 17:981–988. doi:10.1007/s00784-012-0764-7

    Article  PubMed  Google Scholar 

  17. Jung RE, Glauser R, Scharer P, Hammerle CH, Sailer HF, Weber FE (2003) Effect of rhBMP-2 on guided bone regeneration in humans. Clin Oral Implants Res 14:556–568

    Article  PubMed  Google Scholar 

  18. Wikesjo UM, Qahash M, Thomson RC, Cook AD, Rohrer MD, Wozney JM, Hardwick WR (2003) Space-providing expanded polytetrafluoroethylene devices define alveolar augmentation at dental implants induced by recombinant human bone morphogenetic protein 2 in an absorbable collagen sponge carrier. Clin Implant Dent Relat Res 5:112–123

    Article  PubMed  Google Scholar 

  19. Donos N, Glavind L, Karring T, Sculean A (2004) Clinical evaluation of an enamel matrix derivative and a bioresorbable membrane in the treatment of degree III mandibular furcation involvement: a series of nine patients. Int J Periodontics Restorative Dent 24:362–369

    PubMed  Google Scholar 

  20. Nevins M, Camelo M, Nevins ML, Schenk RK, Lynch SE (2003) Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone. J Periodontol 74:1282–1292. doi:10.1902/jop.2003.74.9.1282

    Article  PubMed  Google Scholar 

  21. Kitamura M, Akamatsu M, Machigashira M, Hara Y, Sakagami R, Hirofuji T, Hamachi T, Maeda K, Yokota M, Kido J, Nagata T, Kurihara H, Takashiba S, Sibutani T, Fukuda M, Noguchi T, Yamazaki K, Yoshie H, Ioroi K, Arai T, Nakagawa T, Ito K, Oda S, Izumi Y, Ogata Y, Yamada S, Shimauchi H, Kunimatsu K, Kawanami M, Fujii T, Furuichi Y, Furuuchi T, Sasano T, Imai E, Omae M, Yamada S, Watanuki M, Murakami S (2011) FGF-2 stimulates periodontal regeneration: results of a multi-center randomized clinical trial. J Dent Res 90:35–40. doi:10.1177/0022034510384616

    Article  PubMed  Google Scholar 

  22. Anusaksathien O, Giannobile WV (2002) Growth factor delivery to re-engineer periodontal tissues. Curr Pharm Biotechnol 3:129–139

    Article  PubMed  Google Scholar 

  23. Carreira AC, Lojudice FH, Halcsik E, Navarro RD, Sogayar MC, Granjeiro JM (2014) Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res 93:335–345. doi:10.1177/0022034513518561

    Article  PubMed  Google Scholar 

  24. Rocque BG, Kelly MP, Miller JH, Li Y, Anderson PA (2014) Bone morphogenetic protein-associated complications in pediatric spinal fusion in the early postoperative period: an analysis of 4658 patients and review of the literature. J Neurosurg Pediatr 14:635–643. doi:10.3171/2014.8.peds13665

    Article  PubMed  Google Scholar 

  25. Marx RE (2004) Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg: Official Journal of the American Association of Oral and Maxillofacial Surgeons 62:489–496

    Article  Google Scholar 

  26. Borie E, Olivi DG, Orsi IA, Garlet K, Weber B, Beltran V, Fuentes R (2015) Platelet-rich fibrin application in dentistry: a literature review. Int J Clin Exp Med 8:7922–7929

    PubMed  PubMed Central  Google Scholar 

  27. Zimmermann M, Caballe-Serrano J, Bosshardt DD, Ankersmit HJ, Buser D and Gruber R (2015) Bone-conditioned medium changes gene expression in bone-derived fibroblasts. Int J Oral Maxillofac Implants

  28. Schwartz Z, Mellonig JT, Carnes DL Jr, de la Fontaine J, Cochran DL, Dean DD, Boyan BD (1996) Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation. J Periodontol 67:918–926. doi:10.1902/jop.1996.67.9.918

  29. Schwartz Z, Somers A, Mellonig JT, Carnes DL Jr, Dean DD, Cochran DL, Boyan BD (1998) Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender. J Periodontol 69:470–478. doi:10.1902/jop.1998.69.4.470

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Miron.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

DBBM particles were kindly supplied by Geistlich AG, Switzerland. All authors declare no conflict of interest.

Funding

This work was fully funded by the Oral Cell Biology Laboratory at the University of Bern, Switzerland.

Informed consent

For this type of study, informed consent was not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caballé-Serrano, J., Fujioka-Kobayashi, M., Bosshardt, D.D. et al. Pre-coating deproteinized bovine bone mineral (DBBM) with bone-conditioned medium (BCM) improves osteoblast migration, adhesion, and differentiation in vitro. Clin Oral Invest 20, 2507–2513 (2016). https://doi.org/10.1007/s00784-016-1747-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-016-1747-x

Keywords

Navigation