Skip to main content

Advertisement

Log in

Differentiation, apoptosis, and GM-CSF receptor expression of human gingival fibroblasts on a titanium surface treated by a dual acid-etched procedure

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Analysis of the effects of titanium surface properties on the biological behavior of human gingival fibroblasts (HGFs).

Materials and methods

HGFs were in vitro cultured on a titanium surface modified by a dual acid-etched procedure and on a control machined surface. Cell adhesion, proliferation, apoptosis, production of certain extracellular matrix (ECM) proteins, and expression of granulocyte macrophage-colony stimulating factor receptor (GM-CSFR) were investigated using in each experiment a total of 18 samples for each titanium surface.

Results

Cell attachment at 3 h of culture was statistically significantly higher on the etched surface. HGF growth increased on both surfaces during the entire experimental period and at day 14 of culture cell proliferation was statistically significantly higher on the treated surface than on the control. No statistically significant differences in percentage of apoptosis events were observed between the surfaces. ECM protein production increased progressively over time on both surfaces. A statistically significant deposition was observed at day 7 and 14 for collagen I and only at day 14 for fibronectin and tenascin, when compared to the baseline. GM-CSFR registered a positive expression on both surfaces, statistically significant at day 14 on the etched surface in comparison with the machined one.

Conclusions

Data showed that titanium surface microtopography modulates in vitro cell response and phenotypical expression of HGFs. The etched surface promoted a higher cell proliferation and differentiation improving the biological behavior of HGFs.

Clinical relevance

Results suggest a possible beneficial effect of surface etching modification on peri-implant biological integration and soft tissue healing which is critical for the formation of a biological seal around the neck of dental implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cochran DL (1999) A comparison of endosseous dental implant surfaces. J Periodontol 70:1523–1539

    Article  PubMed  Google Scholar 

  2. Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA et al (2006) Implant surface roughness and bone healing: a systematic review. J Dent Res 85:496–500

    Article  PubMed  Google Scholar 

  3. Chappuis V, Buser R, Brägger U, Bornstein MM et al (2013) Long-term outcomes of dental implants with a titanium plasma-sprayed surface: a 20-year prospective case series study in partially edentulous patients. Clin Implant Dent Relat Res 15:780–790

    Article  PubMed  Google Scholar 

  4. Esposito M, Maghaireh H, Grusovin MG, Ziounas I et al (2012) Soft tissue management for dental implants: what are the most effective techniques? A Cochrane systematic review. Eur J Oral Implantol 5:221–238

    PubMed  Google Scholar 

  5. Lavelle CL (1981) Mucosal seal around endosseous dental implants. J Oral Implantol 9:357–371

    PubMed  Google Scholar 

  6. Tomasi C, Tessarolo F, Caola I, Wennström J et al (2013) Morphogenesis of peri-implant mucosa revisited: an experimental study in humans. Clin Oral Implants Res. doi:10.1111/clr.12223

    Google Scholar 

  7. Rozario T, De Simone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341:126–140

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chavrier C, Hartmann DJ, Couble ML, Herbage D (1988) Distribution and organization of the elastic system fibres in healthy human gingiva. Ultrastructural and immunohistochemical study. Histochemistry 89:47–52

    Article  PubMed  Google Scholar 

  9. Hynes RO, Yamada KM (1982) Fibronectins: multifunctional modular glycoproteins. J Cell Biol 95:369–377

    Article  PubMed  Google Scholar 

  10. Jones FS, Jones PL (2000) The Tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 218:235–259

    Article  PubMed  Google Scholar 

  11. Schroeder HE, Listgarten MA (1997) The gingival tissues: the architecture of periodontal protection. Periodontol 2000(13):91–120

    Article  Google Scholar 

  12. Fleetwood AJ, Cook AD, Hamilton JA (2005) Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol 25:405–428

    Article  PubMed  Google Scholar 

  13. Hamilton JA, Anderson GP (2004) GM-CSF biology. Growth Factors 22:225–231

    Article  PubMed  Google Scholar 

  14. Postiglione L, Montagnani S, Riccio A, Montuori N et al (2002) Enhanced expression of the receptor for granulocyte macrophage colony stimulating factor on dermal fibroblasts from scleroderma patients. J Rheumatol 29:94–101

    PubMed  Google Scholar 

  15. Postiglione L, Di Domenico G, Montagnani S, Di Spigna G et al (2003) Granulocyte-macrophage colony-stimulating (GM-CSF) induces the osteoblastic differentiation of the human osteosarcoma cell line SaOS-2. Calcif Tissue Int 72:85–97

    Article  PubMed  Google Scholar 

  16. Di Domenico G, Del Vecchio L, Ramaglia L, Postiglione L (2003) Immunophenotipic analysis of human gingival fibroblasts and its regulation by granulocyte-macrophage colony stimulating factor (GM-CSF). Minerva Stomatol 52:81–91

    PubMed  Google Scholar 

  17. Davies JE (1998) Mechanisms of endosseous integration. Int J Prosthodont 11:391–401

    PubMed  Google Scholar 

  18. Szmukler-Moncler S, Testori T, Bernard JP (2004) Etched implants: a comparative surface analysis of four implant systems. J Biomed Mater Res B Appl Biomater 69:46–57

    Article  PubMed  Google Scholar 

  19. Brunette DM (1988) The effects of implant surface topography on the behaviour of cells. Int J Oral Maxillofac Implants 3:231–246

    PubMed  Google Scholar 

  20. Anselme K, Bigerelle M, Noel B, Dufresne E et al (2000) Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 49:155–166

    Article  PubMed  Google Scholar 

  21. Ramaglia L, Postiglione L, Di Spigna G, Capece G et al (2011) Sandblasted-acid-etched titanium surface influences in vitro the biological behavior of SaOS-2 human osteoblast-like cells. Dent Mater J 30:183–192

    Article  PubMed  Google Scholar 

  22. Palaiologou A, Stoute D, Fan Y, Lallier TE (2012) Altered cell motility and attachment with titanium surface modifications. J Periodontol 83:90–100

    Article  PubMed  Google Scholar 

  23. Lowenberg BF, Pilliar RM, Aubin JE, Fernie GR et al (1987) Migration, attachment, and orientation of human gingival fibroblasts to root slices, naked and porous-surfaced titanium alloy discs and zircalloy-2 discs in vitro. J Dent Res 66:1000–1005

    Article  PubMed  Google Scholar 

  24. Guy SC, McQuade MJ, Scheidt MJ, McPherson JC III et al (1993) In vitro attachment of human gingival fibroblasts to endosseous implant materials. J Periodontol 64:542–546

    Article  PubMed  Google Scholar 

  25. Abrahamsson I, Zitzmann NU, Berglundh T, Wennerberg A et al (2001) Bone and soft tissue integration to titanium implants with different surface topography: an experimental study in the dog. Int J Oral Maxillofac Implants 16:323–332

    PubMed  Google Scholar 

  26. Abrahamsson I, Zitzmann NU, Berglundh T, Linder E et al (2002) The mucosal attachment to titanium implants with different surface characteristics: an experimental study in dogs. J Clin Periodontol 29:448–455

    Article  PubMed  Google Scholar 

  27. Berglundh T, Lindhe J, Ericsson I, Marinello CP et al (1991) The soft tissue barrier at implants and teeth. Clin Oral Implants Res 2:81–90

    Article  PubMed  Google Scholar 

  28. Listgarten MA, Lang NP, Schroeder HE, Scheroeder A (1991) Periodontal tissues and their counterparts around endosseous implants. Clin Oral Implants Res 2:1–19

    Article  PubMed  Google Scholar 

  29. Berglundh T, Lindhe J (1996) Dimension of the peri-implant mucosa. Biological width revisited. J Clin Periodontol 23:971–973

    Article  PubMed  Google Scholar 

  30. Lindhe J, Berglundh T (1998) The interface between the mucosa and the implant. J Periodontol 17:47–54

    Article  Google Scholar 

  31. Schupbach P, Glauser R (2007) The defense architecture of the human peri-implant mucosa: a histological study. J Prosthet Dent 97:S15–S25

    Article  PubMed  Google Scholar 

  32. Kononen M, Hormia M, Kivilahti J, Hautaniemi J et al (1992) Effect of surface processing on the attachment, orientation, and proliferation of human gingival fibroblasts on titanium. J Biomed Mater Res 26:1325–1341

    Article  PubMed  Google Scholar 

  33. Kunzler TP, Drobek T, Schuler M, Spencer ND (2007) Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials 28:2175–2182

    Article  PubMed  Google Scholar 

  34. Oates TW, Maller SC, West J, Steffensen B (2005) Human gingival fibroblast integrin subunit expression on titanium implant surfaces. J Periodontol 76:1743–1750

    Article  PubMed  Google Scholar 

  35. Grossner-Schreiber B, Herzog M, Hedderich J, Duck A et al (2006) Focal adhesion contact formation by fibroblasts cultured on surface modified dental implants: an in vitro study. Clin Oral Implants Res 17:736–745

    Article  PubMed  Google Scholar 

  36. Albrektsson T, Wennerberg A (2004) Oral implant surfaces: part 1-review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 17:536–543

    PubMed  Google Scholar 

  37. Wennerberg A, Albrektsson T (2010) On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 25:63–74

    PubMed  Google Scholar 

  38. Postiglione L, Di Domenico G, Ramaglia L, Montagnani S et al (2003) Behavior of SaOS-2 cells cultured on different titanium surfaces. J Dent Res 82:692–696

    Article  PubMed  Google Scholar 

  39. Postiglione L, Di Domenico G, Ramaglia L, Di Lauro AE et al (2004) Different titanium surfaces modulate the bone phenotype of SaOS-2 osteoblast-like cells. Eur J Histochem 48:213–222

    PubMed  Google Scholar 

  40. Wirth C, Comte V, Lagneau C (2005) Nitinol surface roughness modulates in vitro cell response: a comparison between fibroblasts and osteoblasts. Mater Sci Eng C 25:51–60

    Article  Google Scholar 

  41. Asano Y, Ihn H, Yamane K, Kubo M et al (2004) Impaired Smad7-Smurf-mediated negative regulation of TGF-β signaling in scleroderma fibroblasts. J Clin Invest 113:253–264

    Article  PubMed Central  PubMed  Google Scholar 

  42. Holmes A, Abraham DJ, Sa S, Shiwen X et al (2001) CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem 14:10594–10601

    Article  Google Scholar 

  43. Mori Y, Chen SJ, Varga J (2003) Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. Arthritis Rheum 48:1964–1978

    Article  PubMed  Google Scholar 

  44. Zetterqvist L, Feldman S, Rotter B, Vincenzi G et al (2010) A prospective, multicenter, randomized-controlled 5-year study of hybrid and fully etched implants for the incidence of peri-implantitis. J Periodontol 81:493–501

    Article  PubMed  Google Scholar 

  45. Rodriguez y Baena R, Arciola CR, Selan L, Battaglia R et al (2012) Evaluation of bacterial adhesion on machined titanium, Osseotite® and Nanotite® discs. Int J Artif Organs 35:754–761

    PubMed  Google Scholar 

  46. Ramaglia L, Sbordone L, Ciaglia R, Barone A et al (1999) A clinical comparison of the efficacy and efficiency of two professional prophylaxis procedures in orthodontic patients. Eur J Orthod 21:423–428

    Article  PubMed  Google Scholar 

  47. Ramaglia L, di Lauro AE, Morgese F, Squillace A (2006) Profilometric and standard error of the mean analysis of rough implant surfaces treated with different instrumentations. Implant Dent 15:77–82

    Article  PubMed  Google Scholar 

  48. Yeo IS, Kim HY, Lim KS, Han JS (2012) Implant surface factors and bacterial adhesion: a review of the literature. Int J Artif Organs 35:762–772

    Article  PubMed  Google Scholar 

  49. Stach RM, Kohles SS (2003) A meta-analysis examining the clinical survivability of machined-surface Osseotite implants in poor-quality bone. Implant Dent 12:87–96

    Article  PubMed  Google Scholar 

  50. Toti P, Sbordone C, Martuscelli R, Califano L et al (2013) Gene clustering analysis in human osteoporosis disease and modifications of the jawbone. Arch Oral Biol 58:912–929

    Article  PubMed  Google Scholar 

  51. Ramaglia L, Morgese F, Filippella M, Colao A (2007) Oral and maxillofacial manifestations of Gardner’s syndrome associated with growth hormone deficiency: case report and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:e30–34

  52. Sullivan D, Sherwood R, Porter S (2001) Long-term performance of Osseotite implants: a 6-year clinical follow-up. Compend Contin Educ Dent 22:326–334

    PubMed  Google Scholar 

Download references

Acknowledgments

The investigation was supported in part by a grant from “Regione Campania”, Department of Scientific and Technological Research, Italy, L.R. n. 5/02 to Prof. Luca Ramaglia and in part by a grant from Biomax SpA, Vicenza, Italy, to Prof. Luca Ramaglia. The authors thank Dr. Maria Pia Bruno (Department of Neurosciences, Reproductive and Odontostomatological Sciences; University of Naples “Federico II”, Naples, Italy) for her assistance in manuscript preparation.

Conflict of interest

All authors certify that no financial relationships, current or within the past 5 years, exist regarding any of the products involved in this study. The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Sbordone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaglia, L., Di Spigna, G., Capece, G. et al. Differentiation, apoptosis, and GM-CSF receptor expression of human gingival fibroblasts on a titanium surface treated by a dual acid-etched procedure. Clin Oral Invest 19, 2245–2253 (2015). https://doi.org/10.1007/s00784-015-1469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1469-5

Keywords

Navigation