Skip to main content

Advertisement

Log in

The effect of the post length and cusp coverage on the cycling and static load of endodontically treated maxillary premolars

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

In endodontically treated teeth, cuspal coverage plays a fundamental role in reducing the risk of fracture. However, the adhesive techniques with or without fiber post increased the possibilities in restoring root-filled teeth. The aim of this study was to determine the effect of the fiber post and/or post length and/or cuspal coverage on the fracture resistance of endodontically treated maxillary premolars. Seventy intact single-rooted maxillary premolars were selected and divided in seven groups of ten each: “intact teeth” (control), “inlay without fiber post” (G1), “inlay with long fiber post” (G2), “inlay with short fiber post” (G3), “onlay without fiber post” (G4), “onlay with long fiber post” (G5), and “onlay with short fiber post” (G6). Except for intact teeth, all specimens were prepared with a mesio–occluso–distal (MOD) cavity, endodontically treated and restored with or without long or short post, with or without cusp coverage. All specimens were thermal-cycled, exposed to a cyclic loading, and then submitted to the static fracture resistance test. Fracture loads and mode of failure were evaluated. A statistically significant difference in fracture resistance was found between group 1 and the other groups (p < 0.001). χ2 test showed statistically significant differences in the patterns of fractures between the groups (p < 0.001). The highest number of favorable fractures was observed in groups 3 and 4. Similar fracture resistance was detected in maxillary premolars endodontically treated with MOD cavity preparations, restored with either direct resin composite with fiber post or cusp capping. The “short post” direct restoration may be a valid alternative in the restoration of root-filled premolars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trope M, Ray HL Jr (1992) Resistance to fracture of endodontically treated roots. Oral Surg Oral Med Oral Pathol 73(1):99–102

    Article  PubMed  Google Scholar 

  2. Reeh ES, Ross GK (1994) Tooth stiffness with composite veneers: a strain gauge and finite element evaluation. Dent Mater 10(4):247–252

    Article  PubMed  Google Scholar 

  3. Linn J, Messer HH (1994) Effect of restorative procedures on the strength of endodontically treated molars. J Endod 20(10):479–485

    Article  PubMed  Google Scholar 

  4. Santos AF, Meira JB, Tanaka CB, Xavier TA, Ballester RY, Lima RG, Pfeifer CS, Versluis A (2010) Can fiber posts increase root stresses and reduce fracture? J Dent Res 89(6):587–591

    Article  PubMed  Google Scholar 

  5. Mannocci F, Qualtrough AJ, Worthington HV, Watson TF, Pitt Ford TR (2005) Randomized clinical comparison of endodontically treated teeth restored with amalgam or with fiber posts and resin composite: five-year results. Oper Dent 30(1):9–15

    PubMed  Google Scholar 

  6. Mannocci F, Bertelli E, Sherriff M, Watson TF, Ford TR (2002) Three-year clinical comparison of survival of endodontically treated teeth restored with either full cast coverage or with direct composite restoration. J Prosthet Dent 88(3):297–301

    Article  PubMed  Google Scholar 

  7. Grandini S, Goracci C, Tay FR, Grandini R, Ferrari M (2005) Clinical evaluation of the use of fiber posts and direct resin restorations for endodontically treated teeth. Int J Prosthodont 18:399–404

    PubMed  Google Scholar 

  8. Salameh Z, Sorrentino R, Ounsi HF et al (2007) Effect of different all-ceramic crown system on fracture resistance and failure pattern of endodontically treated maxillary premolars restored with and without glass fiber posts. J Endod 33:848–851

    Article  PubMed  Google Scholar 

  9. Lohbauer U, von der Horst T, Frankenberger R, Krämer N, Petschelt A (2003) Flexural fatigue behavior of resin composite dental restoratives. Dent Mater 19(5):435–440

    Article  PubMed  Google Scholar 

  10. Soh MS, Yap AU, Sellinger A (2007) Physicomechanical evaluation of low-shrinkage dental nanocomposites based on silsesquioxane cores. Eur J Oral Sci 115:230–238

    Article  PubMed  Google Scholar 

  11. Touati B, Aidan N (1997) Second generation laboratory composite resins for indirect restorations. J Esthet Dent 9(3):108–118

    Article  PubMed  Google Scholar 

  12. Ausiello P, De Gee AJ, Rengo S, Davidson CL (1997) Fracture resistance of endodontically treated premolars adhesively restored. Am J Dent 10:237–241

    PubMed  Google Scholar 

  13. Soares PV, Santos-Filho PC, Martins LR, Soares CJ (2008) Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part I: fracture resistance and fracture mode. J Prosthet Dent 99:30–37

    Article  PubMed  Google Scholar 

  14. Soares PV, Santos-Filho PC, Gomide HA, Araujo CA, Martins LR, Soares CJ (2008) Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part II: strain measurement and stress distribution. J Prosthet Dent 99:114–122

    Article  PubMed  Google Scholar 

  15. Lertchirakarn V, Palamara JE, Messer HH (2003) Finite element analysis and strain-gauge studies of vertical root fracture. J Endod 29:529–534

    Article  PubMed  Google Scholar 

  16. Marchesi G, Breschi L, Antoniolli F, Di Lenarda R, Ferracane J, Cadenaro M (2010) Contraction stress of low-shrinkage composite materials assessed with different testing systems. Dent Mater 26(10):947–953

    Article  PubMed  Google Scholar 

  17. Lu H, Stansbury JW, Bowman CN (2005) Impact of curing protocol on conversion and shrinkage stress. J Dent Res 84(9):822–826

    Article  PubMed  Google Scholar 

  18. Tauböck TT, Bortolotto T, Buchalla W, Attin T, Krejci I (2010) Influence of light-curing protocols on polymerization shrinkage and shrinkage force of a dual-cured core build-up resin composite. Eur J Oral Sci 118(4):423–429

    Article  PubMed  Google Scholar 

  19. van Dijken JW (2010) Durability of resin composite restorations in high C-factor cavities: a 12-year follow-up. J Dent 38(6):469–474

    Article  PubMed  Google Scholar 

  20. Hannig C, Westphal C, Becker K, Attin T (2005) Fracture resistance of endodontically treated maxillary premolars restored with CAD/CAM ceramic inlays. J Prosthet Dent 94:342–349

    Article  PubMed  Google Scholar 

  21. Hurmuzlu F, Kiremitci A, Serper A, Altundasar E, Siso SH (2003) Fracture resistance of endodontically treated premolars restored with ormocer and packable composite. J Endod 29:838–840

    Article  PubMed  Google Scholar 

  22. Hurmuzlu F, Serper A, Siso SH, Er K (2003) In vitro fracture resistance of root-filled teeth using new-generation dentine bonding adhesives. Int Endod J 36:770–773

    Article  PubMed  Google Scholar 

  23. Sagsen B, Aslan B (2006) Effect of bonded restorations on the fracture resistance of root filled teeth. Int Endod J 39:900–904

    Article  PubMed  Google Scholar 

  24. Sorrentino R, Salameh Z, Zarone F, Tay FR, Ferrari M (2007) Effect of post-retained composite restoration of MOD preparations on the fracture resistance of endodontically treated teeth. J Adhes Dent 9:49–56

    PubMed  Google Scholar 

  25. Goncalves LA, Vansan LP, Paulino SM, Sousa Neto MD (2006) Fracture resistance of weakened roots restored with a transilluminating post and adhesive restorative materials. J Prosthet Dent 96(5):339–344

    Article  PubMed  Google Scholar 

  26. Schwartz RS, Robbins JW (2004) Post placement and restoration of endodontically treated teeth: a literature review. J Endod 30(5):289–301

    Article  PubMed  Google Scholar 

  27. Radovic I, Mazzitelli C, Chieffi N, Ferrari M (2008) Evaluation of the adhesion of fiber posts cemented using different adhesive approaches. Eur J Oral Sci 116(6):557–563

    Article  PubMed  Google Scholar 

  28. Bitter K, Noetzel J, Stamm O, Vaudt J, Meyer-Lueckel H, Neumann K, Kielbassa AM (2009) Randomized clinical trial comparing the effects of post placement on failure rate of postendodontic restorations: preliminary results of a mean period of 32 months. J Endod 35(11):1477–1482

    Article  PubMed  Google Scholar 

  29. Mondelli RF, Ishikiriama SK, de Oliveira Filho O, Mondelli J (2009) Fracture resistance of weakened teeth restored with condensable resin with and without cusp coverage. J Appl Oral Sci 17(3):161–165

    Article  PubMed  Google Scholar 

  30. Tamse A, Fuss Z, Lustig J, Kaplavi J (1999) An evaluation of endodontically treated vertically fractured teeth. J Endod 25(7):506–508

    Article  PubMed  Google Scholar 

  31. Tamse A, Zilburg I, Halpern J (1998) Vertical root fractures in adjacent maxillary premolars: an endodontic-prosthetic perplexity. Int Endod J 31(2):127–132

    Article  PubMed  Google Scholar 

  32. de V Habekost L, Camacho GB, Azevedo EC, Demarco FF (2007) Fracture resistance of thermal cycled and endodontically treated premolars with adhesive restorations. J Prosthet Dent 98(3):186–192

    Article  PubMed  Google Scholar 

  33. Assif D, Gorfil C (1994) Biomechanical considerations in restoring endodontically treated teeth. J Prosthet Dent 71(6):565–567

    Article  PubMed  Google Scholar 

  34. Tang W, Wu Y, Smales RJ (2010) Identifying and reducing risks for potential fractures in endodontically treated teeth. J Endod 36(4):609–617

    Article  PubMed  Google Scholar 

  35. Kovarik RE, Breeding LC, Caughman WF (1992) Fatigue life of three core materials under simulated chewing conditions. J Prosthet Dent 68(4):584–590

    Article  PubMed  Google Scholar 

  36. Huysmans MC, Peters MC, Van der Varst PG, Plasschaert AJ (1993) Failure behaviour of fatigue-tested post and cores. Int Endod J 26(5):294–300

    Article  PubMed  Google Scholar 

  37. Pierrisnard L, Bohin F, Renault P, Barquins M (2002) Corono-radicular reconstruction of pulpless teeth: a mechanical study using finite element analysis. J Prosthet Dent 88(4):442–448

    Article  PubMed  Google Scholar 

  38. Freedman GA (2001) Esthetic post-and-core treatment. Dent Clin North Am 45(1):103–116

    PubMed  Google Scholar 

  39. Krejci I, Duc O, Dietschi D, de Campos E (2003) Marginal adaptation, retention and fracture resistance of adhesive composite restorations on devital teeth with and without posts. Oper Dent 28(2):127–135

    PubMed  Google Scholar 

  40. Fokkinga WA, Le Bell AM, Kreulen CM, Lassila LV, Vallittu PK, Creugers NH (2005) Ex vivo fracture resistance of direct resin composite complete crowns with and without posts on maxillary premolars. Int Endod J 38(4):230–237

    Article  PubMed  Google Scholar 

  41. Siso SH, Hürmüzlü F, Turgut M, Altundaşar E, Serper A, Er K (2007) Fracture resistance of the buccal cusps of root filled maxillary premolar teeth restored with various techniques. Int Endod J 40(3):161–168

    Article  PubMed  Google Scholar 

  42. Bitter K, Meyer-Lueckel H, Fotiadis N, Blunck U, Neumann K, Kielbassa AM, Paris S (2010) Influence of endodontic treatment, post insertion, and ceramic restoration on the fracture resistance of maxillary premolars. Int Endod J 43(6):469–477

    Article  PubMed  Google Scholar 

  43. Soares CJ, Soares PV, de Freitas Santos-Filho PC, Castro CG, Magalhaes D, Versluis A (2008) The influence of cavity design and glass fiber posts on biomechanical behavior of endodontically treated premolars. J Endod 34(8):1015–1019

    Article  PubMed  Google Scholar 

  44. McLaren JD, McLaren CI, Yaman P, Bin-Shuwaish MS, Dennison JD, McDonald NJ (2009) The effect of post type and length on the fracture resistance of endodontically treated teeth. J Prosthet Dent 101(3):174–182

    Article  PubMed  Google Scholar 

  45. Giovani AR, Vansan LP, de Sousa Neto MD, Paulino SM (2009) In vitro fracture resistance of glass-fiber and cast metal posts with different lengths. J Prosthet Dent 101(3):183–188

    Article  PubMed  Google Scholar 

  46. Sorensen JA, Mrtinoff JT (1984) Intracoronal reinforcement and coronal coverage: a study of endodontically treated teeth. J Prosthet Dent 51:780–784

    Article  PubMed  Google Scholar 

  47. Cheung GSP, Chan TK (2003) Long-term survival of primary root canal treatment carried out in a dental teaching hospital. Int Endod J 36:117–128

    Article  PubMed  Google Scholar 

  48. Aquilino SA, Caplan DJ (2002) Relationship between crown placement and the survival of endodontically treated teeth. J Prosthet Dent 87:256–263

    Article  PubMed  Google Scholar 

  49. Lin CL, Chang YH, Liu PR (2008) Multi-factorial analysis of a cusp-replacing adhesive premolar restoration: a finite element study. J Dent 36(3):194–203

    Article  PubMed  Google Scholar 

  50. Chang YH, Lin WH, Kuo WC, Chang CY, Lin CL (2009) Mechanical interactions of cuspal-coverage designs and cement thickness in a cusp-replacing ceramic premolar restoration: a finite element study. Med Biol Eng Comput 47(4):367–374

    Article  PubMed  Google Scholar 

  51. Brunton PA, Cattell P, Burke FJ, Wilson NH (1999) Fracture resistance of teeth restored with onlays of three contemporary tooth-colored resin-bonded restorative materials. J Prosthet Dent 82(2):167–171

    Article  PubMed  Google Scholar 

  52. Mohammadi N, Kahnamoii MA, Yeganeh PK, Navimipour EJ (2009) Effect of fiber post and cusp coverage on fracture resistance of endodontically treated maxillary premolars directly restored with composite resin. J Endod 35(10):1428–1432

    Article  PubMed  Google Scholar 

  53. Newman MP, Yaman P, Dennison J, Rafter M, Billy E (2003) Fracture resistance of endodontically treated teeth restored with composite posts. J Prosthet Dent 89(4):360–367

    Article  PubMed  Google Scholar 

  54. Taha NA, Palamara JE, Messer HH (2009) Cuspal deflection, strain and microleakage of endodontically treated premolar teeth restored with direct resin composites. J Dent 37(9):724–730

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully thanks Maicol Roglio, Alberto Gambino and Alberto Iuso for their cooperation in sample preparation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Scotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scotti, N., Scansetti, M., Rota, R. et al. The effect of the post length and cusp coverage on the cycling and static load of endodontically treated maxillary premolars. Clin Oral Invest 15, 923–929 (2011). https://doi.org/10.1007/s00784-010-0466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-010-0466-y

Keywords

Navigation