Skip to main content

Advertisement

Log in

Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

The bioactivity of calcium silicate mineral trioxide aggregate (MTA) cements has been attributed to their ability to produce apatite in presence of phosphate-containing fluids. This study evaluated surface morphology and chemical transformations of an experimental accelerated calcium-silicate cement as a function of soaking time in different phosphate-containing solutions. Cement discs were immersed in Dulbecco’s phosphate-buffered saline (DPBS) or Hank’s balanced salt solution (HBSS) for different times (1–180 days) and analysed by scanning electron microscopy connected with an energy dispersive X-ray analysis (SEM-EDX) and micro-Raman spectroscopy. SEM-EDX revealed Ca and P peaks after 14 days in DPBS. A thin Ca- and P-rich crystalline coating layer was detected after 60 days. A thicker multilayered coating was observed after 180 days. Micro-Raman disclosed the 965-cm−1 phosphate band at 7 days only on samples stored in DPBS and later the 590- and 435-cm−1 phosphate bands. After 60–180 days, a layer ∼200–900 μm thick formed displaying the bands of carbonated apatite (at 1,077, 965, 590, 435 cm-1) and calcite (at 1,088, 713, 280 cm−1). On HBSS-soaked, only calcite bands were observed until 90 days, and just after 180 days, a thin apatite–calcite layer appeared. Micro-Raman and SEM-EDX demonstrated the mineralization induction capacity of calcium-silicate cements (MTAs and Portland cements) with the formation of apatite after 7 days in DPBS. Longer time is necessary to observe bioactivity when cements are immersed in HBSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis R, Pitt Ford TR (2005) The constitution of mineral trioxide aggregate. Dent Mater 21:297–303

    Article  PubMed  Google Scholar 

  2. Saunders WP (2008) A prospective clinical study of periradicular surgery using mineral trioxide aggregate as a root-end filling. J Endod 34:660–665

    Article  PubMed  Google Scholar 

  3. Pace R, Giuliani V, Pagavino G (2008) Mineral trioxide aggregate as repair material for furcal perforation: case series. J Endod 34:1130–1133

    Article  PubMed  Google Scholar 

  4. Holden DT, Schwartz SA, Kirkpatrick TC, Schindler WG (2008) Clinical outcomes of artificial root-end barriers with mineral trioxide aggregate in teeth with immature apices. J Endod 34:812–817

    Article  PubMed  Google Scholar 

  5. Gandolfi MG, Farascioni S, Pashley DH, Gasparotto G, Prati C (2008) Calcium silicate coating derived from Portland cement as treatment for hypersensitive dentine. J Dent 36:565–578

    Article  PubMed  Google Scholar 

  6. Nair PNR, Duncan HF, Pitt-Ford TR, Luder HU (2009) Histological, ultrastructural and quantitative investigations on the response of healthy human pulps to experimental capping with mineral trioxide aggregate: a randomized controlled trial. Int Endod J 42:422–444

    Article  PubMed  Google Scholar 

  7. Torabinejad M, White DJ (1995) US Patent Number, 5,769,638

  8. Camilleri J (2007) Hydration mechanisms of mineral trioxide aggregate. Int Endod J 40:462–470

    Article  PubMed  Google Scholar 

  9. Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I (2005) Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 31:97–100

    Article  PubMed  Google Scholar 

  10. Bozeman TB, Lemon RR, Eleazer PD (2006) Elemental analysis of crystal precipitates from gray and white MTA. J Endod 32:425–428

    Article  PubMed  Google Scholar 

  11. Coleman NJ, Nicholson JW, Awosanya K (2007) A preliminary investigation of the in vitro bioactivity of white Portland cement. Cem Concr Res 37:1518–1523

    Article  Google Scholar 

  12. Tay FR, Pashley DH, Rueggeberg FA, Loushine RJ, Weller RN (2007) Calcium-phosphate phase transformation produced by the interaction of the Portland cement component of white mineral trioxide aggregate with a phosphate-containing fluid. J Endod 33:1347–1351

    Article  PubMed  Google Scholar 

  13. Tay FR, Pashley DH (2008) Guided tissue remineralisation of partially demineralised human dentine. Biomaterials 29:1127–1137

    Article  PubMed  Google Scholar 

  14. Ding SJ, Kao CT, Shie MY, CJr H, Huang TH (2008) The physical and cytological properties of white MTA mixed with Na2HPO4 as an accelerant. J Endod 34:748–751

    Article  PubMed  Google Scholar 

  15. Chng HK, Islam I, Yap AUJ, Tong YW, Koh ET (2005) Properties of a new root-end filling material. J Endod 31:665–668

    Article  PubMed  Google Scholar 

  16. Islam I, Chng HK, Adrian U, Yap UJ (2006) Comparison of the physical and mechanical properties of MTA and Portland cement. J Endod 32:193–197

    Article  PubMed  Google Scholar 

  17. Wiltblank KB, Schwartz SA, Schindler WG (2007) Effect of selected accelerants on the physical properties of Mineral Trioxide Aggregate and Portland cement. J Endod 33:1235–1238

    Article  Google Scholar 

  18. Abdullah D, Ford TR, Papaioannou S, Nicholson J, McDonald F (2002) An evaluation of accelerated Portland cement as a restorative material. Biomaterials 23:4001–4010

    Article  PubMed  Google Scholar 

  19. Kogan P, He J, Glickman GN, Watanabe I (2006) The effects of various additives on setting properties of WMTA. J Endod 32:569–572

    Article  PubMed  Google Scholar 

  20. Nelson DGA, Featherstone JDB (1982) Preparation, analysis and characterization of carbonated apatites. Calcif Tissue Int 34:S69–S75

    PubMed  Google Scholar 

  21. Black L, Breen C, Yarwood J, Deng CS, Phipps J, Maitland G (2006) Hydration of tricalcium aluminate (C3A) in the presence and absence of gypsum – studied by Raman spectroscopy and X-ray diffraction. J Mater Chem 16:1263–1272

    Article  Google Scholar 

  22. Sarma LP, Prasad PSR, Ravikumar N (1998) Raman spectroscopic study of phase transitions in natural gypsum. J Raman Spectrosc 29:851–856

    Article  Google Scholar 

  23. Tarrida M, Madon M, Le Rolland B, Colombet P (1995) An in-situ Raman spectroscopy study of the hydration of tricalcium silicate. Adv Cem Based Mater 2:15–20

    Google Scholar 

  24. Gastaldi D, Boccaleri E, Canonico F, Bianchi M (2007) The use of Raman spectroscopy as a versatile characterization tool for calcium sulphoaluminate cements: a compositional and hydration study. J Mater Sci 42:8426–8432

    Article  Google Scholar 

  25. Martinez-Ramirez S, Frıas M, Domingo C (2006) Micro-Raman spectroscopy in white Portland cement hydration: long-term study at room temperature. J Raman Spectrosc 37:555–561

    Article  Google Scholar 

  26. Gallego D, Higuita N, Garcia F, Ferrel N, Hansford DJ (2008) Bioactive coatings on Portland cement substrates: Surface precipitation of apatite-like crystals. Mater Sci Engin 28:347–352

    Article  Google Scholar 

  27. Potgieter-Vermaak SS, Potgieter JH, Van Grieken R (2006) The application of Raman spectrometry to investigate and characterize cement, part I: a review. Cem Concr Res 36:656–662

    Article  Google Scholar 

  28. Taddei P, Tinti A, Gandolfi MG, Rossi PL, Prati C (2009) Vibrational study on the bioactivity of portland cement-based materials for endodontic use. J Mol Structure 924–926:548–554

    Article  Google Scholar 

  29. Takita T, Hayashi M, Takeiti O, Ogiso B, Suzuki N, Otsuka K, Ito K (2006) Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells. Int Endod J 39:415–422

    Article  PubMed  Google Scholar 

  30. Tuna D, Ölmez A (2008) Clinical long-term evaluation of MTA as a direct pulp capping material in primary teeth. Int Endod J 41:273–278

    Article  PubMed  Google Scholar 

  31. Siqueira JF, Guimarães-Pinto T, Rõcas IN (2007) Effect of chemomechanical preparation with 2.5% sodium hypochlorite and intracanal medication with calcium hydroxide on cultivable bacteria in infected root canals. J Endod 33:800–805

    Article  PubMed  Google Scholar 

  32. Coleman NJ, Awosanya K, Nicholson JW (2009) Aspects of the in vitro bioactivity of hydraulic calcium (alumino)silicate cement. J Biomed Mater Res Part 90A:166–174

    Article  Google Scholar 

  33. Zhao W, Wang J, Zhai W, Wang Z, Chang J (2005) The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials 26:6113–6121

    Article  PubMed  Google Scholar 

  34. Fujita Y, Yamamuro T, Nakamura T, Kotani S, Ohtsuki C, Kokubo T (1991) The bonding behavior of calcite to bone. J Biomed Mater Res 25:991–1003

    Article  PubMed  Google Scholar 

  35. Kamali S, Moranville M, Leclercq S (2008) Material and environmental parameter effects on the leaching of cement pastes: experiments and modelling. Cem Concr Res 38:575–585

    Google Scholar 

  36. Gandolfi MG, Sauro S, Mannocci F, Zanna S, Capoferri M, Prati C, Mongiorgi R (2007) New tetrasilicate cement as retrograde filling material: an in vitro study on fluid penetration. J Endod 33:1082–1085

    Article  PubMed  Google Scholar 

  37. Shie MY, Chen DCH, Wang CY, Chiang TY, Ding SJ (2008) Immersion behaviour of gelatine-containing calcium phosphate cement. Acta Biomater 4:646–655

    Article  PubMed  Google Scholar 

  38. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  PubMed  Google Scholar 

  39. Gandolfi MG, Perut F, Ciapetti G, Mongiorgi R, Prati C (2008) New Portland cement-based materials for endodontics mixed with articaine solution: a study of cellular response. J Endod 34:39–44

    Article  PubMed  Google Scholar 

  40. Gandolfi MG, Pagani S, Perut F, Ciapetti G, Baldini N, Mongiorgi R, Prati C (2008) Innovative silicate-based cements for endodontics: a study of osteoblast-like cell response. J Biomed Mater Res 86(A):477–486

    Article  Google Scholar 

  41. Gandolfi MG, Ciapetti G, Perut F, Taddei P, Modena E, Rossi PL, Prati C (2009) Biomimetic calcium-silicate cements aged in simulated body solutions. Osteoblasts response and analyses of apatite coating. J Appl Biomater Biomech, in press

  42. Camilleri J, Montesin FE, Di Silvio L, Pitt Ford TR (2005) The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use. Int Endod J 38:834–842

    Article  PubMed  Google Scholar 

  43. Ribeiro DA, Duarte MA, Matsumoto MA, Marques ME, Salvadori DM (2005) Biocompatibility in vitro tests of mineral trioxide aggregate and regular and white Portland cements. J Endod 31:605–607

    Article  PubMed  Google Scholar 

  44. Koh ET, Torabinejad M, Pitt Ford TR, Brady K, McDonald F (1997) Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Mater Res 37:432–439

    Article  PubMed  Google Scholar 

  45. Al-Rabeah E, Perinpanayagam H, MacFarland D (2006) Human alveolar bone cells interact with ProRoot and tooth-colored MTA. J Endod 32:872–875

    Article  PubMed  Google Scholar 

  46. Chen CL, Huang TH, Ding SJ et al (2009) Comparison of calcium silicate cement and mineral trioxide aggregate biologic effects and bone markers expression in MG63 cells. J Endod 35:682–685

    Article  PubMed  Google Scholar 

  47. Saidon J, He J, Zhu Q, Safavi K, Spångberg LS (2003) Cell and tissue reactions to mineral trioxide aggregate and Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 95:483–489

    Article  PubMed  Google Scholar 

  48. Torabinejad M, Pitt Ford TR, McKendry DJ, Kariyawasan SP et al (2009) Histologic assessment of mineral trioxide aggregate as root-end filling in monkeys. Int Endod J 42:408–411

    Article  PubMed  Google Scholar 

  49. Masuda-Murakami Y, Kobayashi M, Wang X, Yamada Y, Kimura Y, Hossain M, Matsumoto K (2009) Effects of mineral trioxide aggregate on the differentiation of rat dental pulp cells. Acta Hystochem, doi:10.1016/j.acthis.2009.05.001

  50. Min KS, Park HJ, Lee SK, Park SH, Hong CU, Kim HW, Lee HH, Kim EC (2008) Effect of mineral trioxide aggregate on dentin bridge formation and expression of dentin sialoprotein and heme oxygenase-1 in human dental pulp. J Endod 34:666–670

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Giovanna Gandolfi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandolfi, M.G., Taddei, P., Tinti, A. et al. Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions. Clin Oral Invest 14, 659–668 (2010). https://doi.org/10.1007/s00784-009-0356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-009-0356-3

Keywords

Navigation