Skip to main content
Log in

Nickel chloride complexes with substituted 4′-phenyl-2′,2′:6′,2″-terpyridine ligands: synthesis, characterization, anti-proliferation activity and biomolecule interactions

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A series of Ni(II) sandwich-like coordinated compounds were synthesized by the reaction of nickel dichloride and ten 4′-(4-substituent phenyl)-2′,2′:6′,2″-terpyridine ligands, and their structures were confirmed by elemental analysis, FT-IR, ESI–MS, solid state ultraviolet spectroscopy and X-ray single crystal diffraction analysis. Three human cancer cell lines and a normal human cell line were used for anti-proliferation potential study: human lung cancer cell line (A549), human esophageal cancer cell line (Eca-109), human liver cancer cells (Bel-7402) and normal human liver cells (HL-7702). The results show that these nickel complexes possess good inhibitory effects on the cancer cells, outperforming the commonly used clinical chemotherapy drug cisplatin. Especially, complexes 3 (-methoxyl) and 7 (-fluoro) have strong inhibitory ability against Eca-109 cell line with IC50 values of 0.223 μM and 0.335 μM, complexes 4 and 6 showed certain cell selectivity, and complex 6 can inhibit cancer cells and slightly poison normal cells when the concentration was controlled. The ability of these complexes binding to CT-DNA was studied by UV titration and CD spectroscopy, and CD spectroscopy was also used to study the secondary structural change of BSA under the action of the complexes. The binding of these complexes with DNA, DNA-Topo I and bovine serum protein has been simulated by molecular docking software, and the docking results and optimal binding conformation data showed that they interacted with DNA in the mode of embedded binding, which is consistent with the experimental results. These complexes are more inclined to move to the cleavage site when docking with DNA-Topo I, so as to play a role of enzyme cleavage, while BSA promotes the action of the complexes by binding to effective binding sites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE et al (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I et al (2020) Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 70(4):394–424

    Google Scholar 

  3. Harmers FP, Gispen WH, Neijt JP (1991) Neurotoxic side-effects of cisplatin. Eur J Cancer (1990) 27(3):372–376

    Article  CAS  Google Scholar 

  4. Huang W, Liu Y, Wang J et al (2018) Small-molecule compounds targeting the STAT3 DNA-binding domain suppress survival of cisplatin-resistant human ovarian cancer cells by inducing apoptosis. Eur J Med Chem 157:887–897

    Article  CAS  PubMed  Google Scholar 

  5. HeidarpoorSaremi L, DadashiNoshahr K, Ebrahimi A et al (2021) Multi-stage screening to predict the specific anticancer activity of Ni(II) mixed-ligand complex on gastric cancer cells; biological activity, FTIR spectrum, DNA binding behavior and simulation studies. Spectrochim Acta Part A Mol Biomol Spectrosc 251:1386–1425

    Google Scholar 

  6. El-Gammal OA, Mohamed FS, Rezk GN et al (2021) Synthesis, characterization, catalytic, DNA binding and antibacterial activities of Co(II), Ni(II) and Cu(II) complexes with new Schiff base ligand. J Mol Liq 326:115–223

    Article  Google Scholar 

  7. Wasylenko DJ, Ganesamoorthy C, Henderson MA et al (2010) Electronic modification of the [Ru II (tpy)(bpy)(OH)2]2+ scaffold: effects on catalytic water oxidation. J Am Chem Soc 132(45):16094–16106

    Article  CAS  PubMed  Google Scholar 

  8. Concepcion JJ, Tsai M, Muckerman JT et al (2010) Mechanism of water oxidation by single-site ruthenium complex catalysts. J Am Chem Soc 132(5):1545–1557

    Article  CAS  PubMed  Google Scholar 

  9. Zheng M, Tan H, Xie Z et al (2013) Fast response and high sensitivity europium metal organic framework fluorescent probe with chelating terpyridine sites for Fe3+. ACS Appl Mater Interfaces 5(3):1078–1083

    Article  CAS  PubMed  Google Scholar 

  10. Baranoff E, Collin J, Flamigni L et al (2004) From ruthenium(II) to iridium(II): 15 years of triads based on bis-terpyridine complexes. Chem Soc Rev 33(3):147–155

    Article  CAS  PubMed  Google Scholar 

  11. Howe-Grant M, Wu KC, Bauer WR et al (1976) Binding of platinum and palladium metallointercalation reagents. Biochem Cell Biol 19(15):4336–4339

    Google Scholar 

  12. Eryazici I, Moorefield CN, Newkome GR (2008) Square-planar Pd(II), Pt(II), and Au(III) terpyridine complexes: their syntheses, physical properties, supramolecular constructs, and biomedical activities. Chem Rev 108(6):1834–1895

    Article  CAS  PubMed  Google Scholar 

  13. Ma Z, Lu W, Liang B et al (2013) Synthesis, characterization, photoluminescent and thermal properties of zinc(II) 4′-phenyl-terpyridine compounds. New J Chem 37(5):1529–1537

    Article  CAS  Google Scholar 

  14. Lowe G, Droz AS, Vilaivan T et al (1999) Cytotoxicity of 2,2’:6,2’’-terpyridineplatinum(II) complexes against human ovarian carcinoma. J Med Chem 42(16):3167–3174

    Article  CAS  PubMed  Google Scholar 

  15. Liang X, Jiang J, Xue X et al (2019) Synthesis, characterization, photoluminescence, anti-tumor activity, DFT calculations and molecular docking with proteins of zinc(II) halogen substituted terpyridine compounds. Dalton Trans 48(28):10488–10504

    Article  CAS  PubMed  Google Scholar 

  16. Liu R, Yan H, Jiang J et al (2020) Synthesis, characterization, photoluminescence, molecular docking and bioactivity of Zinc(II) compounds based on different substituents. Molecules 25(15):3459–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li J, Yan H, Wang Z et al (2021) Copper chloride complexes with substituted 4’-phenyl-terpyridine ligands: synthesis, characterization, antiproliferative activities and DNA interactions. Dalton Trans 50(23):8243–8257

    Article  CAS  PubMed  Google Scholar 

  18. Huang L, Liu R, Li J et al (2019) Synthesis, characterization, anti-tumor activity, photo-luminescence and BHb/HHb/Hsp90 molecular docking of Zinc(II) hydroxyl-terpyridine complexes. J Inorg Biochem 201:134–162

    Article  Google Scholar 

  19. Li J, Liu R, Jiang J et al (2020) Synthesis, characterization, photoluminescence, antiproliferative activity, and DNA interaction of cadmium(II) substituted 4’-phenyl-terpyridine compounds. J Inorg Biochem 210:131–165

    Article  Google Scholar 

  20. Li J, Liu R, Jiang J et al (2019) Zinc(II) terpyridine complexes: substituent effect on photoluminescence, antiproliferative activity, and DNA interaction. Molecules 24(24):4519–4546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma Z, Zhang B, Guedes Da Silva MFC et al (2020) Synthesis, characterization, thermal properties and antiproliferative potential of copper(ii) 4’-phenyl-terpyridine compounds. Dalton Trans 45(12):5339–5355

    Article  Google Scholar 

  22. Wang S, Chu W, Wang Y et al (2013) Synthesis, characterization and cytotoxicity of Pt(II), Pd(II), Cu(II) and Zn(II) complexes with 4’-substituted terpyridine. Appl Organomet Chem 27:373–379

    Article  Google Scholar 

  23. Wei C, Ren L, Gao N (2013) Interactions of terpyridines and their Pt(II) complexes with G-quadruplex DNAs and telomerase inhibition. Int J Biol Macromol 57:1–8

    Article  CAS  PubMed  Google Scholar 

  24. Kuehnel MF, Orchard KL, Dalle KE et al (2017) Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J Am Chem Soc 139:7217–7223

    Article  CAS  PubMed  Google Scholar 

  25. White F, Sykora RE (2014) Crystal structure of bis(2,2′:6′,2′′-terpyridine-k3 N, N′, N′′)nickel(II) dicyanidoaurate(I). Acta Crystallogr Sect E Struct Rep Online 70:519–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ciszewski JT, Mikhaylov DY, Holin KV et al (2011) Redox trends in terpyridine nickel complexes. Inorg Chem 50:8630–8635

    Article  CAS  PubMed  Google Scholar 

  27. Budnikova Y, Vicic D, Klein A (2018) Exploring mechanisms in Ni terpyridine catalyzed C-C cross-coupling reactions-a review. Inorganics 6(1):18–36

    Article  Google Scholar 

  28. Constable EC, Lewis J, Schröder M (1982) The preparation and ekctrochemistry of complexes of 4’, 4-diphenyl-2,2’: 6’,2’’ WfwePyrkl. Polyhedron 3(1):311–312

    Article  Google Scholar 

  29. Agilent (2012) CrysAlis PRO, Version. Agilent Technologies, Yarnton, UK 171:40–53

  30. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 1(71):3–8

    Article  Google Scholar 

  31. Dolomanov OV, Bourhis L, Puschmann H et al (2008) OLEX2: a portable molecular graphicsOLEX2. Acta Crystallogr A Found Adv A64:C219

    Article  Google Scholar 

  32. Lj F (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 4(32):837–838

    Google Scholar 

  33. Ma Z, Wei L, Alegria ECBA et al (2014) Synthesis and characterization of copper(II) 4’-phenyl-terpyridine compounds and catalytic application for aerobic oxidation of benzylic alcohols. Dalton Trans 43(10):4048–4058

    Article  CAS  PubMed  Google Scholar 

  34. Jiang J, Li J, Liu C et al (2020) Study on the substitution effects of zinc benzoate terpyridine complexes on photoluminescence, antiproliferative potential and DNA binding properties. J Biol Inorg Chem 25:311–324

    Article  CAS  PubMed  Google Scholar 

  35. Alsaeedi MS, Babgi BA, Hussien MA et al (2020) DNA-binding and anticancer activity of binuclear gold(I) alkynyl complexes with a phenanthrenyl bridging ligand. Molecules 25(5):1033–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. HashemzadehEsfahani N, Salami F, Saberi Z et al (2019) DNA G-quadruplexes binding and antitumor activity of palladium aryl oxime ligand complexes encapsulated in either albumin or algal cellulose nanoparticles. Colloids Surf B 176:70–79

    Article  CAS  Google Scholar 

  37. Kellett A, Molphy Z, Slator C et al (2019) Molecular methods for assessment of non-covalent metallodrug-DNA interactions. Chem Soc Rev 48(4):971–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sirajuddin M, Ali S, Badshah A (2013) Drug-DNA interactions and their study by UV–visible, fluorescence spectroscopies and cyclic voltametry. J Photochem Photobiol B 124:1–19

    Article  CAS  PubMed  Google Scholar 

  39. Long EC (1990) On demonstrating DNA intercalation. Acc Chem Res 9(23):271–273

    Article  Google Scholar 

  40. Terenzi A, Barone G, Silvestri A et al (2009) The interaction of native calf thymus DNA with FeIII-dipyrido [3,2-a:2′,3′-c] phenazine[J]. J Inorg Biochem 103(1):1–9

    Article  CAS  PubMed  Google Scholar 

  41. Hanifa B, Sirajuddin M, Kubicki M et al (2022) Three isomeric 4-[(n-bromophenyl) carbamoyl] butanoic acids (n=2, 3 and 4) as DNA intercalator: synthesis, physicochemical characterization, antimicrobial activity, antioxidant potential and in silico study. J Mol Struct 1262:133033

    Article  CAS  Google Scholar 

  42. Scott RL (1956) Some comments on the Benesi–Hildebrand equation. Recl Trav Chim Pays-Bas 75:787–789

    Article  CAS  Google Scholar 

  43. Hammond PR (1964) 85. The effect of experimental errors on Benesi–Hildebrand plots and on the inherent accuracy of the equation. J Chem Soc 479–484

  44. Hanifa B, Sirajuddin M, Tiekink ERT et al (2022) Designing, physiochemical confirmation, evaluation of biological and in-silico potential of Triorganotin(IV) complexes. J Mol Struct 1260:132814

    Article  CAS  Google Scholar 

  45. Sirajuddin M, Ali S, Tahir MN (2021) Organotin (IV) derivatives based on 2-((2-methoxyphenyl) carbamoyl) benzoic acid: synthesis, spectroscopic characterization, assessment of antibacterial, DNA interaction, anticancer and antileishmanial potentials. J Mol Struct 1229:129600

    Article  CAS  Google Scholar 

  46. Sirajuddin M, Ali S, Shah NA et al (2012) Synthesis, characterization, biological screenings and interaction with calf thymus DNA of a novel azomethine 3-((3,5-dimethylphenylimino) methyl) benzene-1,2-diol. Spectrochim Acta Part A Mol Biomol Spectrosc 94:134–142

    Article  CAS  Google Scholar 

  47. Gayathri S, Viswanathamurthi P, Thuslim V et al (2022) Synthesis, structural, DNA/protein binding and cytotoxic studies of copper(I) ∝-diimine hydrazone complexes. Inorg Chim Acta 533:120780

    Article  CAS  Google Scholar 

  48. Andrews SS, Tretton J (2020) Physical principles of circular dichroism. J Chem Educ 97:4370–4376

    Article  CAS  Google Scholar 

  49. Norden B, Kurucsev T (1994) Analysing DNA complexes by circular and linear dichroism. J Mol Recognit 7:141–155

    Article  CAS  PubMed  Google Scholar 

  50. Meenongwa A, Brissos RF, Soikum C et al (2016) Effects of N, N-heterocyclic ligands on the in vitro cytotoxicity and DNA interactions of copper(II) chloride complexes from amidino-O-methylurea ligands. New J Chem 40:5861–5876

    Article  CAS  Google Scholar 

  51. Ribeiro AG, Almeida SMVD, de Oliveira JF et al (2019) Novel 4-quinoline-thiosemicarbazone derivatives: synthesis, antiproliferative activity, in vitro and in silico biomacromolecule interaction studies and topoisomerase inhibition. Eur J Med Chem 182:111592

    Article  CAS  PubMed  Google Scholar 

  52. Kong D, Wang J, Zhu L et al (2008) Oxidative DNA cleavage by Schiff base tetraazamacrocyclic oxamido nickel(II) complexes. J Inorg Biochem 102:824–832

    Article  CAS  PubMed  Google Scholar 

  53. Garbett NC, Ragazzon PA, Chaires JB (2007) Circular dichroism to determine binding mode and affinity of ligand–DNA interactions. Nat Protoc 2:3166–3172

    Article  CAS  PubMed  Google Scholar 

  54. Baase WA, Johnson W Jr (1979) Grcular dichroism and DNA secondary structure. Nucleic Acids Res 6:797–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kashanian S, Askari S, Ahmadi F et al (2008) In vitro study of DNA interaction with clodinafop-propargyl herbicide. DNA Cell Biol 27:581–586

    Article  CAS  PubMed  Google Scholar 

  56. Zhang L, Liu Y, Hu X et al (2020) Studies on interactions of pentagalloyl glucose, ellagic acid and gallic acid with bovine serum albumin: a spectroscopic analysis. Food Chem 324:126872

    Article  CAS  PubMed  Google Scholar 

  57. Scognamiglio PL, Vicidomini C, Fontanella F et al (2022) Protein binding of benzofuran derivatives: a CD spectroscopic and in silico comparative study of the effects of 4-nitrophenyl functionalized benzofurans and benzodifurans on BSA protein structure. Biomolecules 12:262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gospodarczyk W, Szutkowski K, Kozak M (2014) Interaction of bovine serum albumin (BSA) with novel Gemini surfactants studied by synchrotron radiation scattering (SR-SAXS), circular dichroism (CD), and nuclear magnetic resonance (NMR). J Phys Chem B 118:8652–8661

    Article  CAS  PubMed  Google Scholar 

  59. Zhu ZM, Zhang WJ (2021) Spectroscopic analysis of the interaction between the antiparasitic drug nitazoxanide and bovine serum albumin. Iran J Sci Technol Trans A Sci 45:867–873

    Article  Google Scholar 

  60. Seng H, Von S, Tan K et al (2010) Crystal structure, DNA binding studies, nucleolytic property and topoisomerase I inhibition of zinc complex with 1,10-phenanthroline and 3-methyl-picolinic acid. Biometals 23:99–118

    Article  CAS  PubMed  Google Scholar 

  61. Seeliger D, de Groot BL (2010) Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 24:417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bheemarasetti M, Palakuri K, Raj S et al (2018) Novel Schiff base metal complexes: synthesis, characterization, DNA binding, DNA cleavage and molecular docking studies. J Iran Chem Soc 15:1377–1389

    Article  CAS  Google Scholar 

  63. Chaurasia M, Tomar D, Chandra S (2019) Synthesis, spectral characterization, and DNA binding studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base 2-((1H–1,2,4-triazol-3-ylimino)methyl)-5-methoxyphenol. J Mol Struct 1179:431–442

    Article  CAS  Google Scholar 

  64. Haribabu J, Alajrawy OI, Jeyalakshmi K et al (2021) N-substitution in isatin thiosemicarbazones decides nuclearity of Cu(II) complexes—spectroscopic, molecular docking and cytotoxic studies. Spectrochim Acta Part A Mol Biomol Spectrosc 246:118963

    Article  CAS  Google Scholar 

  65. Haribabu J, Jeyalakshmi K, Arun Y et al (2015) Synthesis, DNA/protein binding, molecular docking, DNA cleavage and in vitro anticancer activity of nickel(II) bis(thiosemicarbazone) complexes. RSC Adv 5:46031–46049

    Article  CAS  Google Scholar 

  66. Haribabu J, Jeyalakshmi K, Arun Y et al (2017) Synthesis of Ni(II) complexes bearing indole-based thiosemicarbazone ligands for interaction with biomolecules and some biological applications. J Biol Inorg Chem 22:461–480

    Article  CAS  PubMed  Google Scholar 

  67. GomathiSankareswari V, Vinod D, Mahalakshmi A et al (2014) Interaction of oxovanadium(IV)–salphen complexes with bovine serum albumin and their cytotoxicity against cancer. Dalton Trans 43:3260–3272

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (Nos. 21261002, 31660251, 31860245, 31960203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongming Liu, Hailan Chen or Zhen Ma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6624 KB)

Supplementary file2 (ZIP 1920 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Sun, D., Wang, S. et al. Nickel chloride complexes with substituted 4′-phenyl-2′,2′:6′,2″-terpyridine ligands: synthesis, characterization, anti-proliferation activity and biomolecule interactions. J Biol Inorg Chem 28, 627–641 (2023). https://doi.org/10.1007/s00775-023-02011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-023-02011-3

Keywords

Navigation