Skip to main content
Log in

Vanadate as a new substrate for nucleoside phosphorylases

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Orthovanadate was shown to serve as a substrate for nucleoside phosphorylases from Escherichia coli, Shewanella oneidensis, Geobacillus stearothermophilus, and Halomonas chromatireducens AGD 8-3. An exception is thymidine phosphorylase from the extremophilic haloalkaliphilic bacterium Halomonas chromatireducens AGD 8-3, which cannot catalyze the vanadolysis of nucleosides. The kinetic parameters of nucleoside vanadolysis were evaluated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rehder D (1992) Structure and function of vanadium compounds in living organisms. Biometals 5:3–12

    Article  CAS  PubMed  Google Scholar 

  2. Rehder D (2015) The role of vanadium in biology. Metallomics 7:730–742

    Article  CAS  PubMed  Google Scholar 

  3. Robson RL, Eady RR, Richardson TH, Miller RW, Hawkis M, Postgate JR (1986) The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature 322:388–390

    Article  CAS  Google Scholar 

  4. Antipov AN, Lyalikova N, Khijniak TV, L’vov NP (1998) Molybdenum-free nitrate reductases from vanadate-reducing bacteria. FEBS Lett 441:257–260

    Article  CAS  PubMed  Google Scholar 

  5. Vilter H (1984) Peroxidases from Phaeophyceae: a vanadium(V)-dependent peroxidase from Ascophyllum nodosum. Phytochemistry 23:1387–1390

    Article  CAS  Google Scholar 

  6. Pezza RJ, Villarreal MA, Montich GG, Argarana CE (2002) Vanadate inhibits the ATPase activity and DNA binding capability of bacterial MutS. A structural model for the vanadate-MutS interaction at the Walker A motif. Nucl Acids Res 30:4700–4708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leon-Lai CH, Gresser MJ, Tracey AS (1996) Influence of vanadium(V) complexes on the catalytic activity of ribonuclease A. The role of vanadate complexes as transition state analogues to reactions at phosphate. Can J Chem 74:38–48

    Article  CAS  Google Scholar 

  8. Seargeant LE, Stinson RA (1979) Inhibition of human alkaline phosphatases by vanadate. Biochem J 181:247–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McLauchlan CC, Peters BJ, Willsky GR, Crans DC (2015) Vanadium-phosphatase complexes: phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord Chem Rev 301–302:163–199

    Article  Google Scholar 

  10. Davies DR, Hol WGJ (2004) The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes. FEBS Lett 577:315–321

    Article  CAS  PubMed  Google Scholar 

  11. Akabayov SR, Akabayov R (2014) Vanadate in structural biology. Inorg Chim Act 420:16–23

    Article  CAS  Google Scholar 

  12. Schramm VL (2007) Enzymatic transition state theory and transition state analogue design. J Biol Chem 282:28297–28300

    Article  CAS  PubMed  Google Scholar 

  13. Drueckhammer DG, Durrwachter JR, Pederson RL, Grans DC, Daniels L, Wong CH (1989) Reversible and in situ formation of organic arsenates and vanadates as organic phosphate mimics in enzymatic reactions: mechanistic investigation of aldol reactions and synthetic applications. J Org Chem 54:70–77

    Article  CAS  Google Scholar 

  14. Guranowski A, Blanquet S (1986) Chromate, molybdate, tungstate and vanadate behave as substrates of yeast diadenosine 5′,5‴-p1, p4-tetraphosphate α, β-phosphorylase. Biochimie 68:757–760

    Article  CAS  PubMed  Google Scholar 

  15. Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Weber PK, Davies PC, Anbar AD, Oremland RS (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332:1163–1166

    Article  CAS  PubMed  Google Scholar 

  16. Plass W (1999) Phosphate and vanadate in biological systems: chemical relative or more. Angew Chem 38:909–912

    Article  CAS  Google Scholar 

  17. Evangelou AM (2002) Vanadium in cancer treatment. Crit Rev Oncol Hematol 42:249–265

    Article  PubMed  Google Scholar 

  18. Camici M, Garcia-Gil M, Pesi R, Allegrini S, Tozzi MG (2019) Purine-metabolising enzymes and apoptosis in cancer. Cancers 1354:1–27

    Google Scholar 

  19. Trevino S, Diaz A, Sanchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, Gonzalez-Vergara E (2019) Vanadium in biological action: chemical, pharmacological aspects and metabolic implications in diabetes mellitus. Biol Trace Elem Res 188:68–98

    Article  CAS  PubMed  Google Scholar 

  20. Pessoa JC, Etcheverry S, Gambinoc D (2015) Vanadium compounds in medicine. Coord Chem Rev 301–302:24–48

    Article  Google Scholar 

  21. Pessoa JC, Garribba E, Santos MFA, Santos-Silva T (2015) Vanadium and proteins: uptake, transport, structure. Coord Chem Rev 301–302:49–86

    Article  Google Scholar 

  22. Srivastava C, Srivastava A (2004) Vanadium and the cardiovascular functions. Can J Physiol Pharmacol 82:833–839

    Article  PubMed  Google Scholar 

  23. Benitez J, Guggeri L, Tomaz I, Arrambide G, Navarro M, Pessoa JC, Garat B, Gambino D (2009) Design of vanadium mixed-ligand complexes as potential anti-protozoa agents. J Inorg Biochem 103:609–616

    Article  CAS  PubMed  Google Scholar 

  24. Neuhard J (1983) Utilization of preformed pyrimidine bases and nucleosides. In: Munch-Petersen A (ed) Metabolism of nucleotides, nucleosides and nucleobases in microorganisms. Academic Press Inc, London, pp 95–148

    Google Scholar 

  25. Luccioni C, Beaumatin J, Bardot V, Lefrancois D (1994) Pyrimidine nucleotide metabolism in human colon carcinomas: comparison of normal tissues, primary tumors and xenografts. Int J Cancer 58:517–522

    Article  CAS  PubMed  Google Scholar 

  26. Furukawa T, Tabata S, Yamamoto M, Kawahara K, Shinsato Y, Minami K, Shimokawa M, Akiyama S (2018) Thymidine phosphorylase in cancer aggressiveness and chemoresistance. Pharm Res 132:15–20

    Article  CAS  Google Scholar 

  27. Kanzaki A, Takebayashi Y, Bando H, Eliason JF, Watanabe S, Miyashita H, Fukumoto M, Toi M, Uchida T (2002) Expression of uridine and thymidine phosphorylase genes in human breast carcinoma. Int J Cancer 97:631–635

    Article  CAS  PubMed  Google Scholar 

  28. Matsushita S, Nitanda T, Furukawa T, Sumizawam T, Tani A, Nishimoto K, Akiba S, Miyadera K, Fukushima M, Yamada Y, Yoshida H, Kanzaki T, Akiyama S (1999) The effect of a thymidine phosphorylase inhibitor on angiogenesis and apoptosis in tumors. Cancer Res 59:1911–1916

    CAS  PubMed  Google Scholar 

  29. Focher F, Spadari S (2001) Thymidine phosphorylase: a two-face Janus in anticancer chemotherapy. Curr Cancer Drug Targets 1:141–153

    Article  CAS  PubMed  Google Scholar 

  30. Bera H, Chigurupati S (2016) Recent discovery of non-nucleobase thymidine phosphorylase inhibitors targeting cancer. Eur J Med Chem 124:992–1003

    Article  CAS  PubMed  Google Scholar 

  31. Mikhailopulo IA, Miroshnikov AI (2010) New trends in nucleoside biotechnology. Acta Naturae 2:38–61

    Article  Google Scholar 

  32. Xie X, Xia J, He K, Lu L, Xu Q, Chen N (2011) Low-molecular-mass purine nucleoside phosphorylase: characterization and application in enzymatic synthesis of nucleoside antiviral drugs. Biotech Lett 33:1107–1112

    Article  CAS  Google Scholar 

  33. Razzel WE, Khorana HG (1958) Purification and properties of pyrimidine deoxyriboside phosphorylase from Escherichia coli. Biochem Biophys Acta 28:562–566

    Article  Google Scholar 

  34. Kline PC, Schramm VL (1993) Purine nucleoside phosphorylase. Catalytic mechanism and transition-state analysis of the arsenolysis reaction. Biochemistry 32:13212–13219

    Article  CAS  PubMed  Google Scholar 

  35. Silva RG, Hirschi JS, Ghanem M, Murkin AS, Schramm VL (2011) Arsenate and phosphate as nucleophiles at the transition states of human purine nucleoside phosphorylase. Biochemistry 50:2701–2709

    Article  CAS  PubMed  Google Scholar 

  36. Birck MR, Schramm VL (2004) Nucleophilic participation in the transition state for human thymidine phosphorylase. J Am Chem Soc 126:2447–2453

    Article  CAS  PubMed  Google Scholar 

  37. Antipov AN, Mordkovich NN, Khijniak TV, Okorokova NA, Veiko VP (2020) Cloning of nucleoside phosphorylase genes from the extremophilic bacterium Halomonas chromatireducens AGD 8–3 with the construction of recombinant producer strains of these proteins and the study of their enzymatic properties. Appl Biochem Microbiol 56:37–43

    Article  CAS  Google Scholar 

  38. Mordkovich NN, Antipov AN, Okorokova NA, Safonova TN, Polyakov KM, Veiko VP (2020) The nature of thermal stability of prokaryotic nucleoside phosphorylases. Appl Biochem Microbiol 56:662–670

    Article  CAS  Google Scholar 

  39. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  40. Kouni MH, Naguib FNM, Niedzwicki JG, Iltzsch MH, Cha S (1988) Uridine phosphorylase from Schistosoma mansoni. J Biol Chem 263:6081–6086

    Article  PubMed  Google Scholar 

  41. Shapovalova AA, Khijniak TV, Tourova TP, Muyzer G, Sorokin DY (2008) Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes. Extremophiles 12:619–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shapovalova AA, Khijniak TV, Tourova TP, Sorokin DY (2009) Halomonas chromatireducens sp. nov., a new denitrifying facultatively haloalkaliphilic bacterium from soda salt marshes capable of aerobic chromate reduction. Mikrobiologiya 78:117–127

    CAS  Google Scholar 

  43. Blank JG, Hoffee PA (1975) Purification and properties of thymidine phosphorylase from Salmonella typhimurum. Arch Biochem Biophys 168:259–265

    Article  CAS  PubMed  Google Scholar 

  44. Pessoa JC (2015) Thirty years through vanadium chemistry. J Inorg Bioch 147:4–24

    Article  Google Scholar 

  45. Benabe JE, Echegoyen LA, Pastrana B, Martinez-Maldonado M (1987) Mechanism of inhibition of glycolysis by vanadate. J Biol Chem 262:9555–9560

    Article  CAS  PubMed  Google Scholar 

  46. Caradoc-Davies TT, Cutfield SM, Lamont IL, John F, Cutfield JF (2004) Crystal structures of Escherichia coli uridine phosphorylase in two native and three complexed forms reveal basis of substrate specificity, induced conformational changes and influence of potassium. J Mol Biol 337:337–354

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey N. Antipov.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipov, A.N., Okorokova, N.A., Safonova, T.N. et al. Vanadate as a new substrate for nucleoside phosphorylases. J Biol Inorg Chem 27, 221–227 (2022). https://doi.org/10.1007/s00775-021-01923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01923-2

Keywords

Navigation