Skip to main content
Log in

Two biologically inspired tetranuclear nickel(II) catalysts: effect of the geometry of Ni4 core on electrocatalytic water oxidation

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Two biologically inspired tetranuclear nickel complexes [Ni4(L–H)4(CH3COO)3]·Cl (1) and [Ni4(L–H)4(CH3COO)4]·2CH3OH (2) (L = di(pyridin-2-yl)methanediol) have been synthesized and investigated by a combination of X-ray crystallography, PXRD, electrochemistry, in-situ UV–Vis spectroelectrochemistry and DLS. Both of the two complexes feature a core composed of four Ni(II) ions with the same peripheral ligation provided by the anionic di(pyridin-2-yl)methanediol and MeCOO ligands. Whereas, complex 1 possesses one distorted cubane-like [Ni43-O)4] core, while 2 has one extended butterfly-like [Ni43-O)2] core. The homogeneous electrocatalytic reactivity of the two water-soluble complexes for water oxidation have been thoroughly studied, which demonstrates that both of them can efficiently electrocatalyze water oxidation with high stability under alkaline conditions, at relatively low over-potentials (η) of 420–790 mV for 1 and 390–780 mV for 2, both in the pH range of 7.67–12.32, with the high TOF of about 139 s−1 (1) and 69 s−1 (2) at pH = 12.32, respectively. By a series of comparative experiments for complexes 1 and 2, we proposed that their crystal geometries play an important role in their electrocatalytic reactivity for water oxidation. We verified that biomimetic cubane geometry could promote OER catalysis with two very similar compounds for the first time.

Graphic abstract

Compared with 2, the biomimetic cubane topology of 1 could promote OER catalysis by facilitating efficient charge delocalization and electron-transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang W, Lai W, Cao R (2017) Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem Rev 117(4):3717–3797. https://doi.org/10.1021/acs.chemrev.6b00299

    Article  PubMed  CAS  Google Scholar 

  2. Okabe Y, Lee SK, Kondo M, Masaoka S (2017) Syntheses and CO2 reduction activities of π-expanded/extended iron porphyrin complexes. J Biol Inorg Chem 22(5):713–725. https://doi.org/10.1007/s00775-017-1438-3

    Article  PubMed  CAS  Google Scholar 

  3. Amanullah S, Dey A (2019) A bi-functional cobalt-porphyrinoid electrocatalyst: balance between overpotential and selectivity. J Biol Inorg Chem 24(4):437–442. https://doi.org/10.1007/s00775-019-01670-5

    Article  PubMed  CAS  Google Scholar 

  4. Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257(1):171–186. https://doi.org/10.1016/j.ccr.2012.04.018

    Article  CAS  Google Scholar 

  5. Han Q, Ding Y (2018) Recent advances in the field of light-driven water oxidation catalyzed by transition-metal substituted polyoxometalates. Dalton Trans 47(25):8180–8188. https://doi.org/10.1039/C8DT01291A

    Article  PubMed  CAS  Google Scholar 

  6. Han Y, Wu Y, Lai W, Cao R (2015) Electrocatalytic water oxidation by a water-soluble nickel porphyrin complex at neutral pH with low overpotential. Inorg Chem 54(11):5604–5613. https://doi.org/10.1021/acs.inorgchem.5b00924

    Article  PubMed  CAS  Google Scholar 

  7. Lubitz W, Reijerse EJ, Messinger J (2008) Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases. Energ & Environ Sci 1(1):15–31. https://doi.org/10.1039/B808792J

    Article  CAS  Google Scholar 

  8. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438(7070):1040–1044. https://doi.org/10.1038/nature04224

    Article  PubMed  CAS  Google Scholar 

  9. Cox N, Retegan M, Neese F, Pantazis DA, Boussac A, Lubitz W (2014) Electronic structure of the oxygen-evolving complex in photosystem II prior to O–O bond formation. Science 345(6198):804. https://doi.org/10.1126/science.1254910

    Article  PubMed  CAS  Google Scholar 

  10. Zhang C, Chen C, Dong H, Shen J-R, Dau H, Zhao J (2015) A synthetic Mn<sub>4</sub>Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science 348(6235):690. https://doi.org/10.1126/science.aaa6550

    Article  PubMed  CAS  Google Scholar 

  11. Vinyard DJ, Brudvig GW (2017) Progress toward a molecular mechanism of water oxidation in photosystem II. Annu Rev Phys Chem 68(1):101–116. https://doi.org/10.1146/annurev-physchem-052516-044820

    Article  PubMed  CAS  Google Scholar 

  12. Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365. https://doi.org/10.1039/C6CS00328A

    Article  PubMed  CAS  Google Scholar 

  13. Blakemore JD, Crabtree RH, Brudvig GW (2015) Molecular catalysts for water oxidation. Chem Rev 115(23):12974–13005. https://doi.org/10.1021/acs.chemrev.5b00122

    Article  PubMed  CAS  Google Scholar 

  14. Matheu R, Garrido-Barros P, Gil-Sepulcre M, Ertem MZ, Sala X, Gimbert-Suriñach C, Llobet A (2019) The development of molecular water oxidation catalysts. Nat Rev Chem 3(5):331–341. https://doi.org/10.1038/s41570-019-0096-0

    Article  CAS  Google Scholar 

  15. Bonchio M, Syrgiannis Z, Burian M, Marino N, Pizzolato E, Dirian K, Rigodanza F, Volpato GA, La Ganga G, Demitri N, Berardi S, Amenitsch H, Guldi DM, Caramori S, Bignozzi CA, Sartorel A, Prato M (2019) Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation. Nat Chem 11(2):146–153. https://doi.org/10.1038/s41557-018-0172-y

    Article  PubMed  CAS  Google Scholar 

  16. Lauinger SM, Piercy BD, Li W, Yin Q, Collins-Wildman DL, Glass EN, Losego MD, Wang D, Geletii YV, Hill CL (2017) Stabilization of polyoxometalate water oxidation catalysts on hematite by atomic layer deposition. ACS Appl Mater Interface 9(40):35048–35056. https://doi.org/10.1021/acsami.7b12168

    Article  CAS  Google Scholar 

  17. Han Z, Horak KT, Lee HB, Agapie T (2017) Tetranuclear manganese models of the OEC displaying hydrogen bonding interactions: application to electrocatalytic water oxidation to hydrogen peroxide. J Am Chem Soc 139(27):9108–9111. https://doi.org/10.1021/jacs.7b03044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Liao R-Z, Siegbahn PEM (2015) Mechanism for OO bond formation in a biomimetic tetranuclear manganese cluster—a density functional theory study. J Photochem Photobio B 152:162–172. https://doi.org/10.1016/j.jphotobiol.2014.12.005

    Article  CAS  Google Scholar 

  19. Atanu D, Virendra K, Shubhadeep P, Anku G, Sumit B, Tharangattu N, Vadapalli C (2019) A Tetranuclear Cobalt (II) phosphate possessing a D4R core: an efficient water oxidation catalyst. https://doi.org/10.1039/D0DT00010H

  20. Hodel FH, Luber S (2016) What influences the water oxidation activity of a bioinspired molecular CoII4O4 Cubane? an in-depth exploration of catalytic pathways. ACS Catal 6(3):1505–1517. https://doi.org/10.1021/acscatal.5b02507

    Article  CAS  Google Scholar 

  21. Gao W-S, Wang J-M, Shi N-N, Chen C-N, Fan Y-H, Wang M (2019) Electrocatalytic water oxidation studies of a tetranuclear Cu(ii) complex with cubane-like core Cu43-O)4. New J Chem 43(11):4640–4647. https://doi.org/10.1039/C8NJ06263C

    Article  CAS  Google Scholar 

  22. Li T-T, Zheng Y-Q (2016) Electrocatalytic water oxidation using a chair-like tetranuclear copper(ii) complex in a neutral aqueous solution. Dalton Trans 45(32):12685–12690. https://doi.org/10.1039/C6DT01891B

    Article  PubMed  CAS  Google Scholar 

  23. Evangelisti F, Moré R, Hodel F, Luber S, Patzke GR (2015) 3d–4f CoII3Ln(OR)4 cubanes as bio-inspired water oxidation catalysts. J Am Chem Soc 137(34):11076–11084. https://doi.org/10.1021/jacs.5b05831

    Article  PubMed  CAS  Google Scholar 

  24. Lan T-X, Gao W-S, Chen C-N, Wang H-S, Wang M, Fan Y-H (2018) Two tetranuclear 3d–4f heterometal complexes Mn2Ln2 (Ln = Dy, Gd): synthesis, structure, magnetism, and electrocatalytic reactivity for water oxidation. New J Chem 42(8):5798–5805. https://doi.org/10.1039/C8NJ00149A

    Article  CAS  Google Scholar 

  25. Daniel Q, Duan L, Timmer BJJ, Chen H, Luo X, Ambre R, Wang Y, Zhang B, Zhang P, Wang L, Li F, Sun J, Ahlquist M, Sun L (2018) Water oxidation initiated by in situ dimerization of the molecular Ru(pdc) catalyst. ACS Catal 8(5):4375–4382. https://doi.org/10.1021/acscatal.7b03768

    Article  CAS  Google Scholar 

  26. Matheu R, Ertem MZ, Gimbert-Suriñach C, Sala X, Llobet A (2019) Seven coordinated molecular ruthenium-water oxidation catalysts: a coordination chemistry journey. Chem Rev 119(6):3453–3471. https://doi.org/10.1021/acs.chemrev.8b00537

    Article  PubMed  CAS  Google Scholar 

  27. Liu X, Maegawa Y, Goto Y, Hara K, Inagaki S (2016) Heterogeneous catalysis for water oxidation by an iridium complex immobilized on bipyridine-periodic Mesoporous organosilica. Angew Chem Int Edit 55(28):7943–7947. https://doi.org/10.1002/anie.201601453

    Article  CAS  Google Scholar 

  28. Azadi G, Zand Z, Mousazade Y, Bagheri R, Cui J, Song Z, Bikas R, Wozniak K, Allakhverdiev SI, Najafpour MM (2019) A tetranuclear nickel(II) complex for water oxidation: meeting new challenges. Int J Hydrog Energy 44(5):2857–2867. https://doi.org/10.1016/j.ijhydene.2018.12.059

    Article  CAS  Google Scholar 

  29. Han A, Chen H, Sun Z, Xu J, Du P (2015) High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors. Chem Commun 51(58):11626–11629. https://doi.org/10.1039/C5CC02626A

    Article  CAS  Google Scholar 

  30. Jia H, Yao Y, Zhao J, Gao Y, Luo Z, Du P (2018) A novel two-dimensional nickel phthalocyanine-based metal–organic framework for highly efficient water oxidation catalysis. J Mater Chem A 6(3):1188–1195. https://doi.org/10.1039/C7TA07978H

    Article  CAS  Google Scholar 

  31. Guan J, Duan Z, Zhang F, Kelly SD, Si R, Dupuis M, Huang Q, Chen JQ, Tang C, Li C (2018) Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat Catal 1(11):870–877. https://doi.org/10.1038/s41929-018-0158-6

    Article  CAS  Google Scholar 

  32. Kottrup KG, D’Agostini S, van Langevelde PH, Siegler MA, Hetterscheid DGH (2018) Catalytic activity of an iron-based water oxidation catalyst: substrate effects of graphitic electrodes. ACS Catal 8(2):1052–1061. https://doi.org/10.1021/acscatal.7b03284

    Article  PubMed  CAS  Google Scholar 

  33. Okamura M, Kondo M, Kuga R, Kurashige Y, Yanai T, Hayami S, Praneeth VKK, Yoshida M, Yoneda K, Kawata S, Masaoka S (2016) A pentanuclear iron catalyst designed for water oxidation. Nature 530(7591):465–468. https://doi.org/10.1038/nature16529

    Article  PubMed  CAS  Google Scholar 

  34. Najafpour MM, Feizi H (2018) Water oxidation catalyzed by two cobalt complexes: new challenges and questions. Catal Sci Technol 8(7):1840–1848. https://doi.org/10.1039/C7CY02602A

    Article  CAS  Google Scholar 

  35. Xu J-H, Guo L-Y, Su H-F, Gao X, Wu X-F, Wang W-G, Tung C-H, Sun D (2017) Heptanuclear CoII5CoIII2 cluster as efficient water oxidation catalyst. Inorg Chem 56(3):1591–1598. https://doi.org/10.1021/acs.inorgchem.6b02698

    Article  PubMed  CAS  Google Scholar 

  36. Su X-J, Gao M, Jiao L, Liao R-Z, Siegbahn PEM, Cheng J-P, Zhang M-T (2015) Electrocatalytic water oxidation by a dinuclear copper complex in a neutral aqueous solution. Angew Chem Intern Edit 54(16):4909–4914. https://doi.org/10.1002/anie.201411625

    Article  CAS  Google Scholar 

  37. Wang J-M, Liu Y-R, Mao X-Y, Shi N-N, Zhang X, Wang H-S, Fan Y-H, Wang M (2019) Two trinuclear CuII complexes: effect of phosphonate ligand on the magnetic property and electrocatalytic reactivity for water oxidation. Chem Asian J 14(15):2685–2693. https://doi.org/10.1002/asia.201900531

    Article  PubMed  CAS  Google Scholar 

  38. Zhou W, Zheng S, Schultz JW, Rath NP, Mirica LM (2016) Aromatic cyanoalkylation through double C-H activation mediated by Ni(III). J Am Chem Soc 138(18):5777–5780. https://doi.org/10.1021/jacs.6b02405

    Article  PubMed  CAS  Google Scholar 

  39. Wang J-W, Zhang X-Q, Huang H-H, Lu T-B (2016) A Nickel(II) complex as a homogeneous electrocatalyst for water oxidation at neutral pH: dual role of HPO42− in catalysis. ChemCatChem 8(20):3287–3293. https://doi.org/10.1002/cctc.201600796

    Article  CAS  Google Scholar 

  40. Asraf MA, Younus HA, Yusubov M, Verpoort F (2015) Earth-abundant metal complexes as catalysts for water oxidation; is it homogeneous or heterogeneous? Catal Sci & Techn 5(11):4901–4925. https://doi.org/10.1039/C5CY01251A

    Article  CAS  Google Scholar 

  41. Liu Y-Y, Liang D, Lu L-Q, Xiao W-J (2019) Practical heterogeneous photoredox/nickel dual catalysis for C-N and C–O coupling reactions. Chem Commun 55(33):4853–4856. https://doi.org/10.1039/C9CC00987F

    Article  CAS  Google Scholar 

  42. Feizi H, Bagheri R, Jagličić Z, Singh JP, Chae KH, Song Z, Najafpour MM (2019) A nickel(ii) complex under water-oxidation reaction: what is the true catalyst? Dalton Trans 48(2):547–557. https://doi.org/10.1039/C8DT03990A

    Article  PubMed  CAS  Google Scholar 

  43. Feizi H, Shiri F, Bagheri R, Singh JP, Chae KH, Song Z, Najafpour MM (2018) The application of a nickel(ii) Schiff base complex in water oxidation: the importance of nanosized materials. Catal Sci Technol 8(15):3954–3968. https://doi.org/10.1039/C8CY00582F

    Article  CAS  Google Scholar 

  44. Zhang M, Zhang M-T, Hou C, Ke Z-F, Lu T-B (2014) Homogeneous electrocatalytic water oxidation at neutral ph by a robust macrocyclic Nickel(II) complex. Angew Chem Int Edit 53(48):13042–13048. https://doi.org/10.1002/anie.201406983

    Article  CAS  Google Scholar 

  45. Bakir M, McKenzie JAM (1997) Electrochemical reactions of CO2 with fac-Re(dpk)(CO)3Cl (dpk = di-2-pyridyl ketone). J Electroanal Chem 425(1):61–66. https://doi.org/10.1016/S0022-0728(96)04940-6

    Article  CAS  Google Scholar 

  46. Lin J, Liang X, Cao X, Wei N, Ding Y (2018) An octanuclear Cu(ii) cluster with a bio-inspired Cu4O4 cubic fragment for efficient photocatalytic water oxidation. Chem Commun 54(88):12515–12518. https://doi.org/10.1039/C8CC06362A

    Article  CAS  Google Scholar 

  47. Serna Z, De la Pinta N, Urtiaga MK, Lezama L, Madariaga G, Clemente-Juan JM, Coronado E, Cortés R (2010) Defective dicubane-like tetranuclear Nickel(II) cyanate and azide nanoscale magnets. Inorg Chem 49(24):11541–11549. https://doi.org/10.1021/ic101970j

    Article  PubMed  CAS  Google Scholar 

  48. Tsohos A, Dionyssopoulou S, Raptopoulou CP, Terzis A, Bakalbassis EG, Perlepes SP (1999) The gem-Diol form of (py)2CO as a ligand in Cobalt(II) carboxylate clusters: a cubane complex and a novel nonanuclear species with a vertex-sharing double square pyramidal structure. Angew Chem Intern Edit 38(7):983–985. https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7%3c983::AID-ANIE983%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  49. Liu W, Thorp HH (1993) Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes 2 Refined distances and other enzymes. Inorg Chem 32(19):4102–4105. https://doi.org/10.1021/ic00071a023

    Article  CAS  Google Scholar 

  50. Opalade AA, Gomez-Garcia CJ, Gerasimchuk N (2019) New route to polynuclear Ni(II) and Cu(II) complexes with bridging oxime groups that are inaccessible by conventional preparations. Cryst Growth Des 19(2):678–693. https://doi.org/10.1021/acs.cgd.8b01262

    Article  CAS  Google Scholar 

  51. Vinayak R, Harinath A, Gómez-García CJ, Panda TK, Benmansour S, Nayek HP (2016) Solvent modulated assembly of two Ni(II) complexes: syntheses. Struct Magn Prop Chem Select 1(20):6532–6539. https://doi.org/10.1002/slct.201601385

    Article  Google Scholar 

  52. Luo G-Y, Huang H-H, Wang J-W, Lu T-B (2016) Further investigation of a nickel-based homogeneous water oxidation catalyst with two cis labile sites. Chemsuschem 9(5):485–491. https://doi.org/10.1002/cssc.201501474

    Article  PubMed  CAS  Google Scholar 

  53. Shahadat HM, Younus HA, Ahmad N, Rahaman MA, Khattak ZAK, Zhuiykov S, Verpoort F (2019) Homogenous electrochemical water oxidation by a nickel(ii) complex based on a macrocyclic N-heterocyclic carbene/pyridine hybrid ligand. Catal Sci Technol 9(20):5651–5659. https://doi.org/10.1039/C9CY01485C

    Article  CAS  Google Scholar 

  54. Wang J-W, Hou C, Huang H-H, Liu W-J, Ke Z-F, Lu T-B (2017) Further insight into the electrocatalytic water oxidation by macrocyclic nickel(ii) complexes: the influence of steric effect on catalytic activity. Catal Sci Technol 7(23):5585–5593. https://doi.org/10.1039/C7CY01527E

    Article  CAS  Google Scholar 

  55. Zhang L-H, Yu F, Shi Y, Li F, Li H (2019) Base-enhanced electrochemical water oxidation by a nickel complex in neutral aqueous solution. Chem Commun 55(43):6122–6125. https://doi.org/10.1039/C9CC01865D

    Article  CAS  Google Scholar 

  56. Llobet A (2014) Molecular water oxidation catalysis: a key topic for new sustainable energy conversion schemes. Wiley, Amsterdam

    Book  Google Scholar 

  57. Zhang M-T, Chen Z, Kang P, Meyer TJ (2013) Electrocatalytic water oxidation with a copper(II) polypeptide complex. J Am Chem Soc 135(6):2048–2051. https://doi.org/10.1021/ja3097515

    Article  PubMed  CAS  Google Scholar 

  58. Kärkäs MD, Åkermark B (2016) Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges. Dalton Trans 45(37):14421–14461. https://doi.org/10.1039/C6DT00809G

    Article  PubMed  CAS  Google Scholar 

  59. Nguyen AI, Ziegler MS, Oña-Burgos P, Sturzbecher-Hohne M, Kim W, Bellone DE, Tilley TD (2015) Mechanistic investigations of water oxidation by a molecular cobalt oxide analogue: evidence for a highly oxidized intermediate and exclusive terminal oxo participation. J Am Chem Soc 137(40):12865–12872. https://doi.org/10.1021/jacs.5b08396

    Article  PubMed  CAS  Google Scholar 

  60. Hong S, Lee Y-M, Cho K-B, Sundaravel K, Cho J, Kim MJ, Shin W, Nam W (2011) ligand topology effect on the reactivity of a mononuclear nonheme iron(IV)-oxo complex in oxygenation reactions. J Am Chem Soc 133(31):11876–11879. https://doi.org/10.1021/ja204008u

    Article  PubMed  CAS  Google Scholar 

  61. Wang B, Lee Y-M, Tcho W-Y, Tussupbayev S, Kim S-T, Kim Y, Seo MS, Cho K-B, Dede Y, Keegan BC, Ogura T, Kim SH, Ohta T, Baik M-H, Ray K, Shearer J, Nam W (2017) Synthesis and reactivity of a mononuclear non-haem cobalt(IV)-oxo complex. Nat Commun 8(1):14839. https://doi.org/10.1038/ncomms14839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Likhtenshtein G (2016) Electron Transfer in Biological Systems. Light Energy Conversion. In: Likhtenshtein G (ed) Electron Spin Interactions in Chemistry and Biology: Fundamentals, Methods, Reactions Mechanisms, Magnetic Phenomena, Structure Investigation. Springer International Publishing, Cham, pp 259–287. https://doi.org/10.1007/978-3-319-33927-6_11

  63. Nocera DG (2012) The artificial leaf. Acc Chem Res 45(5):767–776. https://doi.org/10.1021/ar2003013

    Article  PubMed  CAS  Google Scholar 

  64. Smith PF, Kaplan C, Sheats JE, Robinson DM, McCool NS, Mezle N, Dismukes GC (2014) What determines catalyst functionality in molecular water oxidation? dependence on ligands and metal nuclearity in cobalt clusters. Inorg Chem 53(4):2113–2121. https://doi.org/10.1021/ic402720p

    Article  PubMed  CAS  Google Scholar 

  65. Zhang M, Frei H (2017) Water oxidation mechanisms of metal oxide catalysts by vibrational spectroscopy of transient intermediates. Annu Rev Phys Chem 68(1):209–231. https://doi.org/10.1146/annurev-physchem-052516-050655

    Article  PubMed  CAS  Google Scholar 

  66. Wang X, Li B, Wu Y-P, Tsamis A, Yu H-G, Liu S, Zhao J, Li Y-S, Li D-S (2020) Investigation on the component evolution of a tetranuclear nickel-cluster-based metal-organic framework in an electrochemical oxidation reaction. Inorg Chem 59(7):4764–4771. https://doi.org/10.1021/acs.inorgchem.0c00024

    Article  PubMed  CAS  Google Scholar 

  67. Sheldrick G (1996) SADABS, Program for area detector adsorption correction. Institute for Inorg. Chem., University of Göttingen, Germany 33

  68. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71(1):3–8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21601171), Natural Science Foundation of Shandong Province (No. ZR2016BB08) and the Fundamental Research Funds for the Central Universities (Chinese Universities Scientific Fund, No. 201713028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhua Fan or Mei Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Meng, X., Xie, W. et al. Two biologically inspired tetranuclear nickel(II) catalysts: effect of the geometry of Ni4 core on electrocatalytic water oxidation. J Biol Inorg Chem 26, 205–216 (2021). https://doi.org/10.1007/s00775-020-01846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01846-4

Keywords

Navigation