Skip to main content
Log in

Alanine to serine substitutions drive thermal adaptation in a psychrophilic diatom cytochrome c6

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this study, we investigate the thermodynamic mechanisms by which electron transfer proteins adapt to environmental temperature by directly comparing the redox properties and folding stability of a psychrophilic cytochrome c and a mesophilic homolog. Our model system consists of two cytochrome c6 proteins from diatoms: one adapted specifically to polar environments, the other adapted generally to surface ocean environments. Direct electrochemistry shows that the midpoint potential for the mesophilic homolog is slightly higher at all temperatures measured. Cytochrome c6 from the psychrophilic diatom unfolds with a melting temperature 10.4 °C lower than the homologous mesophilic cytochrome c6. Changes in free energy upon unfolding are identical, within error, for the psychrophilic and mesophilic protein; however, the chemical unfolding transition of the psychrophilic cytochrome c6 is more cooperative than for the mesophilic cytochrome c6. Substituting alanine residues found in the mesophile with serine found in corresponding positions of the psychrophile demonstrates that burial of the polar serine both decreases the thermal stability and decreases the midpoint potential. The mutagenesis data, combined with differences in the m-value of chemical denaturation, suggest that differences in solvent accessibility of the hydrophobic core underlie the adaptation of cytochrome c6 to differing environmental temperature.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

cyt c :

Cytochrome c

Fc:

Fragilariopsis cylindrus

Tp:

Thalassiosira pseudonana

PGE:

Pyrolytic graphite edge

Gdn:

Guanidine HCl

E mid :

Midpoint potential

References

  1. Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13:11643–11665. https://doi.org/10.3390/ijms130911643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of “omic” technologies. Trends Microbiol 18:374–381. https://doi.org/10.1016/j.tim.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  3. Gianese G, Bossa F, Pascarella S (2002) Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins Struct Funct Genet 47:236–249. https://doi.org/10.1002/prot.10084

    Article  CAS  PubMed  Google Scholar 

  4. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. BBA Rev Bioenerg 811:265–322. https://doi.org/10.1016/0304-4173(85)90014-X

    Article  CAS  Google Scholar 

  5. Worrall JAR, Schlarb-Ridley BG, Reda T et al (2007) Modulation of heme redox potential in the cytochrome c6 family. J Am Chem Soc 129:9468–9475. https://doi.org/10.1021/ja072346g

    Article  CAS  PubMed  Google Scholar 

  6. Schnackenberg J, Than M, Mann K et al (1999) Amino acid sequence, crystallization and structure determination of reduced and oxidized cytochrome c6 from the green alga Scenedesmus obliquus. J Mol Biol 290:1019–1030

    Article  CAS  Google Scholar 

  7. Battistuzzi G, Borsari M, Sola M, Francia F (1997) Redox thermodynamics of the native and alkaline forms of eukaryortic and bacterial class I cytochromes c. Biochemistry 36:16247–16258. https://doi.org/10.1021/bi971535g

    Article  CAS  PubMed  Google Scholar 

  8. Terui N, Tachiiri N, Matsuo H et al (2003) Relationship between redox function and protein stability of cytochromes c. J Am Chem Soc 125:13650–13651. https://doi.org/10.1021/ja035682f

    Article  CAS  PubMed  Google Scholar 

  9. Armbrust EV, Berges JA, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86. https://doi.org/10.1126/science.1101156

    Article  CAS  PubMed  Google Scholar 

  10. Mock T, Otillar RP, Strauss J et al (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541:536–540. https://doi.org/10.1038/nature20803

    Article  CAS  PubMed  Google Scholar 

  11. Berges JA, Varela DE, Harrison PJ (2002) Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Mar Ecol Prog Ser 225:139–146. https://doi.org/10.3354/meps225139

    Article  Google Scholar 

  12. Baek SH, Jung SW, Shin K (2011) Effects of temperature and salinity on growth of Thalassiosira pseudonana (Bacillariophyceae) isolated from ballast water. J Freshw Ecol 26:547–552. https://doi.org/10.1080/02705060.2011.582696

    Article  CAS  Google Scholar 

  13. Ferguson RL, Collier A, Meete DA (1976) Growth response of Thalassiosira pseudonana Hasle and Heimdal Clone 3H to illumination temperature and nitrogen source. Chesap Sci 17:148–158

    Article  Google Scholar 

  14. Lizotte MP (2001) The contributions of sea ice algae to antarctic marine primary production. Am Zool 41:57–73. https://doi.org/10.1668/0003-1569(2001)041[0057:TCOSIA]2.0.CO;2

    Article  Google Scholar 

  15. Lyon BR, Mock T (2014) Polar microalgae: new approaches towards understanding adaptations to an extreme and changing environment. Biology (Basel) 3:56–80. https://doi.org/10.3390/biology3010056

    Article  Google Scholar 

  16. Mock T, Valentin K (2004) Photosynthesis and cold acclimation: Molecular evidence from a polar diatom. J Phycol 40:732–741. https://doi.org/10.1111/j.1529-8817.2004.03224.x

    Article  CAS  Google Scholar 

  17. Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41:175–183. https://doi.org/10.1111/j.1365-313X.2004.02294.x

    Article  CAS  PubMed  Google Scholar 

  18. Gruber A, Rocap G, Kroth PG et al (2015) Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J 81:519–528. https://doi.org/10.1111/tpj.12734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nordberg H, Cantor M, Dusheyko S et al (2014) The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 42:D26–31. https://doi.org/10.1093/nar/gkt1069

    Article  CAS  PubMed  Google Scholar 

  20. Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795. https://doi.org/10.1016/J.JMB.2004.05.028

    Article  Google Scholar 

  21. Arslan E, Schulz H, Zufferey R et al (1998) Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli. Biochem Biophys Res Commun 747:744–747

    Article  Google Scholar 

  22. Berry EA, Trumpower BL (1987) Simultaneous determination of hemes a, b and c from pyridine hemochrome spectra. Anal Biochem 161:1–15

    Article  CAS  Google Scholar 

  23. Fourmond V (2016) QSoas: a versatile software for data analysis. Anal Chem 88:5050–5052. https://doi.org/10.1021/acs.analchem.6b00224

    Article  CAS  PubMed  Google Scholar 

  24. John DM, Weeks KM (2000) van’t Hoff enthalpies without baselines. Protein Sci 9:1416–1419. https://doi.org/10.1110/ps.9.7.1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Santoro MM, Bolen DW (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry 27:8063–8068. https://doi.org/10.1021/bi00421a014

    Article  CAS  PubMed  Google Scholar 

  26. Knapp JA, Pace CN (1974) Guanidine hydrochloride and acid denaturation of horse, cow, and Candida krusei cytochromes c. Biochemistry 13:1289–1294

    Article  CAS  Google Scholar 

  27. Lojou É, Bianco P (2004) Membrane electrodes for protein and enzyme electrochemistry. Electroanalysis 16:1113–1121. https://doi.org/10.1002/elan.200403001

    Article  CAS  Google Scholar 

  28. Correia dos Santos MM, Paes de Sousa PM, Simões Gonçalves ML et al (2003) Electrochemical studies on small electron transfer proteins using membrane electrodes. J Electroanal Chem 541:153–162. https://doi.org/10.1016/S0022-0728(02)01427-4

    Article  CAS  Google Scholar 

  29. Ye T, Kaur R, Senguen FT et al (2008) Methionine ligand lability of type I cytochromes c: detection of ligand loss using protein film voltammetry. J Am Chem Soc 130:6682–6683. https://doi.org/10.1021/ja801071n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levin BD, Can M, Bowman SEJ et al (2011) Methionine ligand lability in monohome cytochromes c: an electrochemical study. J Phys Chem B 115:11718–11726

    Article  CAS  Google Scholar 

  31. Pettigrew GW, Moore GR (1987) Cytochromes c: biological aspects. Springer, Berlin

    Book  Google Scholar 

  32. Cho YS, Wang QJ, Krogmann D, Whitmarsh J (1999) Extinction coefficients and midpoint potentials of cytochrome c6 from the cyanobacteria Arthrospira maxima, Microcystis aeruginosa, and Synechocystis 6803. Biochim Biophys Acta Bioenerg 1413:92–97. https://doi.org/10.1016/S0005-2736(99)00124-8

    Article  CAS  Google Scholar 

  33. Bialek W, Nelson M, Tamiola K et al (2008) Deeply branching c6-like cytochromes of cyanobacteria. Biochemistry 47:5515–5522. https://doi.org/10.1021/bi701973g

    Article  CAS  PubMed  Google Scholar 

  34. Campos AP, Aguiar AP, Hervas M et al (1993) Cytochrome c6 from Monoraphidium braunii: a cytochrome with an unusual heme axial coordination. Eur J Biochem 216:329–341. https://doi.org/10.1111/j.1432-1033.1993.tb18150.x

    Article  CAS  PubMed  Google Scholar 

  35. Dikiy A, Carpentier W, Vandenberghe I et al (2002) Structural basis for the molecular properties of cytochrome c6. Biochemistry 41:14689–14699

    Article  CAS  Google Scholar 

  36. Sokolovskaya OM, Magyar JS, Buzzeo MC (2014) Electrochemical behavior of cytochrome c552 from a psychrophilic microorganism. J Phys Chem C 118:18829–18835. https://doi.org/10.1021/jp501146e

    Article  CAS  Google Scholar 

  37. D’Amico S, Marx JC, Gerday C, Feller G (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278:7891–7896. https://doi.org/10.1074/jbc.M212508200

    Article  CAS  PubMed  Google Scholar 

  38. Satoh T, Itoga A, Isogai Y et al (2002) Increasing the conformational stability by replacement of heme axial ligand in c-type cytochrome. FEBS Lett 531:543–547. https://doi.org/10.1016/S0014-5793(02)03615-3

    Article  CAS  PubMed  Google Scholar 

  39. Akazaki H, Kawai F, Chida H et al (2008) Cloning, expression and purification of cytochrome c6 from the brown alga Hizikia fusiformis and complete X-ray diffraction analysis of the structure. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:674–680. https://doi.org/10.1107/S1744309108017752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lange C, Luque I, Hervás M et al (2005) Role of the surface charges D72 and K8 in the function and structural stability of the cytochrome c6 from Nostoc sp. PCC 7119. FEBS J 272:3317–3327. https://doi.org/10.1111/j.1742-4658.2005.04747.x

    Article  CAS  PubMed  Google Scholar 

  41. Mason JM, Bendall DS, Howe CJ, Worrall JAR (2012) The role of a disulfide bridge in the stability and folding kinetics of Arabidopsis thaliana cytochrome c6A. Biochim Biophys Acta Proteins Proteom 1824:311–318. https://doi.org/10.1016/j.bbapap.2011.10.015

    Article  CAS  Google Scholar 

  42. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. https://doi.org/10.1093/nar/gkh468

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fraczkiewicz R, Braun W (1998) Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comput Chem 19:319–333

    Article  CAS  Google Scholar 

  44. Hasegawa J, Uchiyama S, Tanimoto Y et al (2000) Selected mutations in a mesophilic cytochrome c confer the stability of a thermophilic counterpart. J Biol Chem 275:37824–37828. https://doi.org/10.1074/jbc.M005861200

    Article  CAS  PubMed  Google Scholar 

  45. Wen X, Patel KM, Russell BS, Bren KL (2007) Effects of heme pocket structure and mobility on cytochrome c stability. Biochemistry 46:2537–2544. https://doi.org/10.1021/bi602380v

    Article  CAS  PubMed  Google Scholar 

  46. Ratcliff K, Corn J, Marqusee S (2009) Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues. Biochemistry 48:5890–5898. https://doi.org/10.1021/bi900305p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Myers JK, Nick Pace C, Martin Scholtz J (1995) Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci 4:2138–2148. https://doi.org/10.1002/pro.5560041020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pickett SD, Sternberg MJE (1993) Empirical scale of side-chain conformational entropy in protein folding. J Mol Biol 231:825–839. https://doi.org/10.1006/jmbi.1993.1329

    Article  CAS  PubMed  Google Scholar 

  49. Hosseinzadeh P, Lu Y (2016) Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. Biochim Biophys Acta Bioenerg 1857:557–581. https://doi.org/10.1016/j.bbabio.2015.08.006

    Article  CAS  Google Scholar 

  50. Fantuzzi A, Sadeghi S, Valetti F et al (2002) Tuning the reduction potential of engineered cytochrome c-553. Biochemistry 41:8718–8724. https://doi.org/10.1021/bi025759x

    Article  CAS  PubMed  Google Scholar 

  51. Tezcan FA, Winkler JR, Gray HB (1998) Effects of ligation and folding on reduction potentials of heme proteins. J Am Chem Soc 120:13383–13388. https://doi.org/10.1021/ja982536e

    Article  CAS  Google Scholar 

  52. Bortolotti CA, Amadei A, Aschi M et al (2012) The reversible opening of water channels in cytochrome c modulates the heme iron reduction potential. J Am Chem Soc 134:13670–13678. https://doi.org/10.1021/ja3030356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the M. J. Murdock Charitable Trust for funding through the Murdock College Research Program for Natural Sciences. We thank the Seattle University College of Science and Engineering for summer support. Seattle University students enrolled in CHEM 1910 collected key preliminary cyclic voltammetry data for this study.

Funding

This study was funded by the M. J. Murdock Charitable Trust Murdock College Research Program for Natural Sciences (2015302:MNL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Frato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, M., Tillery, L., Tabaie, E. et al. Alanine to serine substitutions drive thermal adaptation in a psychrophilic diatom cytochrome c6. J Biol Inorg Chem 25, 489–500 (2020). https://doi.org/10.1007/s00775-020-01777-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01777-0

Keywords

Navigation