Skip to main content
Log in

Heme-bound nitroxyl, hydroxylamine, and ammonia ligands as intermediates in the reaction cycle of cytochrome c nitrite reductase: a theoretical study

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this article, we consider, in detail, the second half-cycle of the six-electron nitrite reduction mechanism catalyzed by cytochrome c nitrite reductase. In total, three electrons and four protons must be provided to reach the final product, ammonia, starting from the HNO intermediate. According to our results, the first event in this half-cycle is the reduction of the HNO intermediate, which is accomplished by two PCET reactions. Two isomeric radical intermediates, HNOH and H2NO, are formed. Both intermediates are readily transformed into hydroxylamine, most likely through intramolecular proton transfer from either Arg114 or His277. An extra proton must enter the active site of the enzyme to initiate heterolytic cleavage of the N–O bond. As a result of N–O bond cleavage, the H2N+ intermediate is formed. The latter readily picks up an electron, forming H2N+•, which in turn reacts with Tyr218. Interestingly, evidence for Tyr218 activity was provided by the mutational studies of Lukat (Biochemistry 47:2080, 2008), but this has never been observed in the initial stages of the overall reduction process. According to our results, an intramolecular reaction with Tyr218 in the final step of the nitrite reduction process leads directly to the final product, ammonia. Dissociation of the final product proceeds concomitantly with a change in spin state, which was also observed in the resonance Raman investigations of Martins et al. (J Phys Chem B 114:5563, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CcNiR:

Cytochrome c nitrite reductase

DFT:

Density functional theory

ET:

Electron transfer

MO:

Molecular orbitals

PCET:

Proton-coupled electron transfer

PES:

Potential energy surface

PT:

Proton transfer

References

  1. Jetten MS (2008) The microbial nitrogen cycle. Environ Microbiol 10(11):2903–2909

    Article  CAS  PubMed  Google Scholar 

  2. Simon J (2002) Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol Rev 26(3):285–309

    Article  CAS  PubMed  Google Scholar 

  3. Richardson DJ (2000) Bacterial respiration: a flexible process for a changing environment. Microbiology UK 146:551–571

    CAS  Google Scholar 

  4. Fritz G et al (2005) Key bacterial multi-centered metal enzymes involved in nitrate and sulfate respiration. J Mol Microbiol Biotechnol 10(2–4):223–233

    Article  CAS  PubMed  Google Scholar 

  5. Bamford VA et al (2002) Structure and spectroscopy of the periplasmic cytochrome c nitrite reductase from Escherichia coli. Biochemistry 41(9):2921–2931

    Article  CAS  PubMed  Google Scholar 

  6. Einsle O et al (2000) Cytochrome c nitrite reductase from Wolinella succinogenes—structure at 1.6 angstrom resolution, inhibitor binding, and heme-packing motifs. J Biol Chem 275(50):39608–39616

    Article  CAS  PubMed  Google Scholar 

  7. Einsle O et al (1999) Structure of cytochrome c nitrite reductase. Nature 400(6743):476–480

    Article  CAS  PubMed  Google Scholar 

  8. Cunha CA et al (2003) Cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774—the relevance of the two calcium sites in the structure of the catalytic subunit (NrfA). J Biol Chem 278(19):17455–17465

    Article  CAS  PubMed  Google Scholar 

  9. Almeida MG et al (2003) The isolation and characterization of cytochrome c nitrite reductase subunits (NrfA and NrfH) from Desulfovibrio desulfuricans ATCC 27774—re-evaluation of the spectroscopic data and redox properties. Eur J Biochem 270(19):3904–3915

    Article  CAS  PubMed  Google Scholar 

  10. Rodrigues ML et al (2006) X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination. EMBO J 25(24):5951–5960

    Article  CAS  PubMed  Google Scholar 

  11. Pereira IAC et al (2000) Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. Biochim Biophys Acta Protein Struct Mol Enzymol 1481(1):119–130

  12. Rodrigues ML et al (2006) Crystallization and preliminary structure determination of the membrane-bound complex cytochrome c nitrite reductase from Desulfovibrio vulgaris Hildenborough. Acta Crystallogr Sect F Struct Biol Crystal Commun 62:565–568

    Article  CAS  Google Scholar 

  13. Polyakov KM et al (2009) High-resolution structural analysis of a novel octaheme cytochrome c nitrite reductase from the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens. J Mol Biol 389(5):846–862

    Article  CAS  PubMed  Google Scholar 

  14. Stach P et al (2000) Bacterial cytochrome c nitrite reductase: new structural and functional aspects. J Inorg Biochem 79(1–4):381–385

    Article  CAS  PubMed  Google Scholar 

  15. Burlat B et al (2005) Cytochrome c nitrite reductase: from structural to physicochemical analysis. Biochem Soc Trans 33:137–140

    Article  CAS  PubMed  Google Scholar 

  16. Simon J et al (2000) A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes. Mol Microbiol 35(3):686–696

    Article  CAS  PubMed  Google Scholar 

  17. Marritt SJ et al (2008) Spectroelectrochemical characterization of a pentaheme cytochrome in solution and as electrocatalytically active films on nanocrystalline metal-oxide electrodes. J Am Chem Soc 130(27):8588–8589

    Article  CAS  PubMed  Google Scholar 

  18. Rudolf M (2004) Cytochrome c nitrite reductase: further investigations of the multiheme enzyme by X-ray crystallography, site-directed mutagenesis, and EPR spectroscopy. UFO Atelier für Gestaltung & Verlag, Allensbach

  19. Clarke TA et al (2006) Comparison of the structural and kinetic properties of the cytochrome c nitrite reductases from Escherichia coli, Wolinella succinogenes, Sulfurospirillum deleyianum and Desulfolvibrio desulfuricans. Biochem Soc Trans 34:143–145

    Article  CAS  PubMed  Google Scholar 

  20. Lukat P et al (2008) Binding and reduction of sulfite by cytochrome c nitrite reductase. Biochemistry 47(7):2080–2086

    Article  CAS  PubMed  Google Scholar 

  21. Clarke TA et al (2008) Role of a conserved glutamine residue in tuning the catalytic activity of Escherichia coli cytochrome c nitrite reductase. Biochemistry 47(12):3789–3799

    Article  CAS  PubMed  Google Scholar 

  22. Einsle O et al (2002) Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase. J Am Chem Soc 124(39):11737–11745

    Article  CAS  PubMed  Google Scholar 

  23. Rudolf M et al (2002) Pentahaem cytochrome c nitrite reductase: reaction with hydroxylamine, a potential reaction intermediate and substrate. Biochem Soc Trans 30:649–653

    Article  CAS  PubMed  Google Scholar 

  24. Bykov D, Neese F (2011) Substrate binding and activation in the active site of cytochrome c nitrite reductase: a density functional study. J Biol Inorg Chem 16(3):417–430

    Article  CAS  PubMed  Google Scholar 

  25. Goodrich LE et al (2010) Electronic structure of heme-nitrosyls and its significance for nitric oxide reactivity, sensing, transport, and toxicity in biological systems. Inorg Chem 49(14):6293–6316

    Article  CAS  PubMed  Google Scholar 

  26. van Wonderen JH et al (2008) The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli. J Biol Chem 283(15):9587–9594

    Article  PubMed  Google Scholar 

  27. Wyllie GRA, Scheidt WR (2002) Solid-state structures of metalloporphyrin NOx compounds. Chem Rev 102(4):1067–1089

    Article  CAS  PubMed  Google Scholar 

  28. Liu YM, Ryan MD (1994) The electrochemical reduction of iron porphyrin nitrosyls in the presence of weak acids. J Electroanal Chem 368(1–2):209–219

    Article  CAS  Google Scholar 

  29. Goodrich LE et al (2013) Electronic structure and biologically relevant reactivity of low-spin {FeNO}(8) porphyrin model complexes: new insight from a bis-picket fence porphyrin. Inorg Chem 52(13):7766–7780

    Article  CAS  PubMed  Google Scholar 

  30. Enemark JH, Feltham RD (1974) Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord Chem Rev 13(4):339–406

    Article  CAS  Google Scholar 

  31. Bykov D, Neese F (2012) Reductive activation of the heme iron-nitrosyl intermediate in the reaction mechanism of cytochrome c nitrite reductase: a theoretical study. J Biol Inorg Chem 17(5):741–760

    Article  CAS  PubMed  Google Scholar 

  32. Fernandez ML, Estrin DA, Bari SE (2008) Theoretical insight into the hydroxylamine oxidoreductase mechanism. J Inorg Biochem 102(7):1523–1530

    Article  CAS  PubMed  Google Scholar 

  33. Berman HM et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

  34. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2(1):73–78

    Article  CAS  Google Scholar 

  35. Neese F (2006) A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry. J Biol Inorg Chem 11(6):702–711

    Article  CAS  PubMed  Google Scholar 

  36. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33(12):8822–8824

    Article  Google Scholar 

  37. Becke AD (1986) Density functional calculations of molecular-bond energies. J Chem Phys 84(8):4524–4529

    Article  CAS  Google Scholar 

  38. Neese F (2003) An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J Comput Chem 24(14):1740–1747

    Article  CAS  PubMed  Google Scholar 

  39. Baerends EJ, Ellis DE, Ros P (1973) Self-consistent molecular Hartree–Fock–Slater calculations—I. The computational procedure. Chem Phys 2(1):41–51

    Article  CAS  Google Scholar 

  40. Dunlap BI, Connolly JWD, Sabin JR (1979) Some approximations in applications of X-alpha theory. J Chem Phys 71(8):3396–3402

    Article  CAS  Google Scholar 

  41. Schafer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835

    Article  Google Scholar 

  42. Eichkorn K et al (1995) Auxiliary basis-sets to approximate coulomb potentials. Chem Phys Lett 240(4):283–289

    Article  CAS  Google Scholar 

  43. Eichkorn K et al (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor Chem Acc 97:119–124

    Article  CAS  Google Scholar 

  44. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Google Scholar 

  45. Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Google Scholar 

  46. Siegbahn PEM, Blomberg MRA (2000) Transition-metal systems in biochemistry studied by high-accuracy quantum chemical methods. Chem Rev 100(2):421–437

    Article  CAS  PubMed  Google Scholar 

  47. Neese F et al (2009) Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem Phys 356(1–3):98–109

    Article  CAS  Google Scholar 

  48. Ahlrichs R (2001) Index of /pub/basen. University Karlsruhe, Karlsruhe. ftp.chemie.uni-karlsruhe.de/pub/basen

  49. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Perkin Trans 2:799–805

    Google Scholar 

  50. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25(12):1463–1473

    Article  CAS  PubMed  Google Scholar 

  51. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  PubMed  Google Scholar 

  52. Neese F (2006) Importance of direct spin–spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study. J Am Chem Soc 128(31):10213–10222

    Article  CAS  PubMed  Google Scholar 

  53. Pipek J, Mezey PG (1989) A fast intrinsic localization procedure applicable for abinitio and semiempirical linear combination of atomic orbital wave-functions. J Chem Phys 90(9):4916–4926

    Article  CAS  Google Scholar 

  54. Pettersen EF et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Google Scholar 

  55. Ling Y et al (2010) NMR, IR/Raman, and structural properties in HNO and RNO (R=alkyl and aryl) metalloporphyrins with implication for the HNO–myoglobin complex. J Am Chem Soc 132(5):1583–1591

    Google Scholar 

  56. Miranda KM (2005) The chemistry of nitroxyl (HNO) and implications in biology. Coord Chem Rev 249(3–4):433–455

    Article  CAS  Google Scholar 

  57. Farmer PJ, Sulc F (2005) Coordination chemistry of the HNO ligand with hemes and synthetic coordination complexes. J Inorg Biochem 99(1):166–184

    Article  CAS  PubMed  Google Scholar 

  58. Serres RG et al (2004) Structural, spectroscopic, and computational study of an octahedral, non-heme {Fe-NO}(6–8) series: [Fe(NO)(cyclam-ac)](2+/+/O). J Am Chem Soc 126(16):5138–5153

    Article  CAS  PubMed  Google Scholar 

  59. Yang L, Ling Y, Zhang Y (2011) HNO binding in a heme protein: structures, spectroscopic properties, and stabilities. J Am Chem Soc 133(35):13814–13817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Goodrich LE, Lehnert N (2013) The trans effect of nitroxyl (HNO) in ferrous heme systems: implications for soluble guanylate cyclase activation by HNO. J Inorg Biochem 118:179–186

    Google Scholar 

  61. Lehnert N, Praneeth VKK, Paulat F (2006) Electronic structure of iron(II)-porphyrin nitroxyl complexes: molecular mechanism of fungal nitric oxide reductase (P450nor). J Comput Chem 27(12):1338–1351

    Article  CAS  PubMed  Google Scholar 

  62. Tissandier MD et al (1998) The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J Phys Chem A 102(40):7787–7794

    Article  CAS  Google Scholar 

  63. Riplinger C, Neese F (2011) The reaction mechanism of cytochrome P450 NO reductase: a detailed quantum mechanics/molecular mechanics study. ChemPhysChem 12(17):3192–3203

    Article  CAS  PubMed  Google Scholar 

  64. Angove HC et al (2002) Protein film voltammetry reveals distinctive fingerprints of nitrite and hydroxylamine reduction by a cytochrome c nitrite reductase. J Biol Chem 277(26):23374–23381

    Article  CAS  PubMed  Google Scholar 

  65. Hirasawa M et al (2010) Enzymatic properties of the ferredoxin-dependent nitrite reductase from Chlamydomonas reinhardtii. Evidence for hydroxylamine as a late intermediate in ammonia production. Photosynth Res 103(2):67–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Kuznetsova S et al (2004) Reactions of spinach nitrite reductase with its substrate, nitrite, and a putative intermediate, hydroxylamine. Biochemistry 43(33):10765–10774

    Article  CAS  PubMed  Google Scholar 

  67. Roberts SA et al (2001) Ligand-induced heme ruffling and bent NO geometry in ultra-high-resolution structures of nitrophorin 4. Biochemistry 40(38):11327–11337

    Article  CAS  PubMed  Google Scholar 

  68. Purwar N et al (2011) Interaction of nitric oxide with catalase: structural and kinetic analysis. Biochemistry 50(21):4491–4503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Kim YO, Goff HM (1990) Characterization of ammonia-ligated low-spin iron(III) porphyrin complexes. Inorg Chem 29(19):3907–3908

    Article  CAS  Google Scholar 

  70. McQuarters AB et al (2013) Disproportionation of O-benzylhydroxylamine catalyzed by a ferric bis-picket fence porphyrin complex. J Inorg General Chem 639(8–9):1520–1526

    CAS  Google Scholar 

  71. Martins G et al (2010) Substrate binding to a nitrite reductase induces a spin transition. J Phys Chem B 114(16):5563–5566

    Article  CAS  PubMed  Google Scholar 

  72. Praneeth VKK et al (2008) Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes. J Am Chem Soc 130(46):15288–15303

    Article  CAS  PubMed  Google Scholar 

  73. Almeida MG et al (2007) A needle in a haystack: the active site of the membrane-bound complex cytochrome c nitrite reductase. FEBS Lett 581(2):284–288

    Article  CAS  PubMed  Google Scholar 

  74. Gwyer JD, Richardson DJ, Butt JN (2005) Diode or tunnel-diode characteristics? Resolving the catalytic consequences of proton coupled electron transfer in a multi-centered oxidoreductase. J Am Chem Soc 127(43):14964–14965

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support of this work by the Max-Planck society. We thank Dr. Dimitrios Pantazis, Christopher Pollock, and Jessica Barilone for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Neese.

Electronic supplementary material

Below is the link to the electronic supplementary material.

The structures of all investigated models are provided in simple XYZ file format.

Supplementary material 1 (PDF 620 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykov, D., Plog, M. & Neese, F. Heme-bound nitroxyl, hydroxylamine, and ammonia ligands as intermediates in the reaction cycle of cytochrome c nitrite reductase: a theoretical study. J Biol Inorg Chem 19, 97–112 (2014). https://doi.org/10.1007/s00775-013-1065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1065-6

Keywords

Navigation