Skip to main content
Log in

Synthesis, characterization, and antibacterial and anticancer screening of {M2+–Co3+–M2+} and {Co3+–M2+} (M is Zn, Cd, Hg) heterometallic complexes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The cobalt(III) complexes Et4N[Co(L1)2] and [Co(L2)3] [H2L1 is 2,6-bis(N-(2-pyridyl)carbamoyl)pyridine and HL2 is 2-(N-(2-pyridyl)carbamoyl)pyridine] were used as the building blocks for preparing a series of {M2+–Co3+–M2+} (where M is Zn, Cd, or Hg) and {Co3+–M2+} (where M is Zn or Cd) heterometallic complexes. All heterometallic complexes were characterized using a host of spectroscopic methods (IR, NMR, and UV/vis spectroscopy and mass spectrometry), elemental analysis, and conductivity measurements. One of the representative compounds, {Hg2+–Co3+–Hg2+}, was characterized crystallographically, and it was revealed that two Hg(II) ions are coordinated within the clefts created by the building block Et4N[Co(L1)2]. The results of screening for anticancer activity against the human brain tumor U87 cell line and antibacterial activity against a range of resistant (Pseudomonas aeruginosa and Proteus vulgaris) as well as standard (Staphylococcus aureus SA 96, P. aeruginosa MTCC 1688, Klebsiella planticola MTCC 2272, and Escherichia coli T7) bacterial strains indicate promising activities. Notably, the observed activity was found to vary with the type of building block and the secondary metal ion present in the heterometallic complex. Treatment-induced cell death [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT and macrocolony assay), growth inhibition, cytogenetic damage, cell cycle delay, and apoptosis were studied as the parameters for cellular response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jung Y, Lippard SJ (2007) Chem Rev 107:1387

    Article  PubMed  CAS  Google Scholar 

  2. Guo Z, Sadler PJ (1999) Angew Chem Int Ed 38:1512

    Article  CAS  Google Scholar 

  3. Fricker SP (2007) Dalton Trans 4903

  4. Hartinger CG, Dyson PJ (2009) Chem Soc Rev 38:391

    Article  PubMed  CAS  Google Scholar 

  5. Schatzschneider U (2010) Eur J Inorg Chem 1451

  6. Fry NL, Mascharak PK (2011) Acc Chem Res 44:289

    Article  PubMed  CAS  Google Scholar 

  7. Iakovidou Z, Papageorgiou A, Demertzis MA, Mioglou E, Mourelatos D, Kotsis A, Yadav PN, Kovala-Demertzi D (2001) Anticancer Drugs 12:65

    Article  CAS  Google Scholar 

  8. Patole J, Dutta S, Padhye S, Sinn E (2001) Inorg Chim Acta 318:207

    Article  CAS  Google Scholar 

  9. Maurer RI, Blower PJ, Dilworth JR, Reynolds CA, Zheng Y, Mullen GED (2002) J Med Chem 45:1420

    Article  PubMed  CAS  Google Scholar 

  10. Cowly AR, Dilworth JR, Donnely PS, Labisbal E, Sousa A (2002) J Am Chem Soc 124:5270

    Article  Google Scholar 

  11. Ferrari MB, Bisceglie F, Pelosi G, Sassi M, Tarasconi P, Cornia M, Capacchi S, Albertini R, Pinelli S (2002) J Inorg Biochem 90:113

    Article  Google Scholar 

  12. Jouad EM, Thanh XD, Bouet G, Bonneau S, Khan MA (2002) Anticancer Res 22:1713

    CAS  Google Scholar 

  13. Barry NPE, Sadler PJ (2012) Chem Soc Rev 41:3264

    Article  PubMed  CAS  Google Scholar 

  14. Gray HB (2003) Proc Natl Acad Sci USA 100:3563

    Article  PubMed  CAS  Google Scholar 

  15. Abrams MJ, Murrer BA (1993) Science 261:725

    Article  PubMed  CAS  Google Scholar 

  16. Sorenson JRJ (1984) Chem Br 16:1110

    Google Scholar 

  17. Crouch RK, Kensler TW, Oberlew LW, Sorenson JRJ (1986) In: Karlin KD, Zubieta J(eds) Biochemical and inorganic copper chemistry, vol 1. Adenine, New York, p 139

  18. Cvek B, Milacic V, Taraba J, Dou QP (2008) J Med Chem 51:6256

    Article  PubMed  CAS  Google Scholar 

  19. Anderson RF, Denny WA, Ware DC, Wilson WR (1996) Br J Cancer 74:S48

    Article  CAS  Google Scholar 

  20. Teicher BA, Holden SA (1987) Radiat Res 109:58

    Article  PubMed  CAS  Google Scholar 

  21. Teicher BA, Abrams M, Rosbe K, Herman T (1990) Cancer Res 50:6971

    PubMed  CAS  Google Scholar 

  22. Ware DC, Siim BG, Robinson KG, Denny WA, Brothers PJ, Clark GR (1991) Inorg Chem 30:3750

    Article  CAS  Google Scholar 

  23. Ware DC, Palmer BD, Wilson WR, Denny WA (1993) J Med Chem 36:1839

    Article  PubMed  CAS  Google Scholar 

  24. Wilson WR, Moselen JW, Cliffe S, Denny WA, Ware DC (1994) Int J Radiat Oncol Biol Phys 29:323

    Article  PubMed  CAS  Google Scholar 

  25. Ware DC, Palmer HR, Brothers PJ, Rickard CEF, Wilson WR, Denny WA (1997) J Inorg Biochem 68:215

    Article  PubMed  CAS  Google Scholar 

  26. Blower PJ, Dilworth JR, Maurer RI, Mullen GD, Reynolds CA, Zheng Y (2001) J Inorg Biochem 85:15

    Article  PubMed  CAS  Google Scholar 

  27. Singh DP, Kumar R, Singh J (2009) Eur J Med Chem 44:1731

    Article  PubMed  CAS  Google Scholar 

  28. Frau′sto da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. Oxford University Press, Oxford

    Google Scholar 

  29. Parkin G (2004) Chem Rev 104:699

    Article  PubMed  CAS  Google Scholar 

  30. Waalkes MP (2000) J Inorg Biochem 79:241

    Article  PubMed  CAS  Google Scholar 

  31. Waalkes MP (2003) Mutat Res 533:107

    Article  PubMed  CAS  Google Scholar 

  32. Stork JR, Thoi VS, Cohen SM (2007) Inorg Chem 46:11213

    Article  PubMed  CAS  Google Scholar 

  33. Garibay SJ, Stork JR, Wang Z, Cohen SM, Telfer S (2007) Chem Commun 4881

  34. Halper SR, Do L, Stork JR, Cohen SM (2006) J Am Chem Soc 128:15255

    Article  PubMed  CAS  Google Scholar 

  35. Halper SR, Cohen SM (2005) Inorg Chem 44:486

    Article  PubMed  CAS  Google Scholar 

  36. Kitagawa S, Kitaura R, Noro S-I (2004) Angew Chem Int Ed 43:2334

    Article  CAS  Google Scholar 

  37. Kitagawa S, Noro S-I, Nakamura T (2006) Chem Commun 701

  38. Caskey SR, Matzger AJ (2008) Inorg Chem 47:7942

    Article  PubMed  CAS  Google Scholar 

  39. Wang Y, Bredenkotter B, Rieger B, Volkmer D (2007) Dalton Trans 689

  40. Ren P, Shi W, Cheng P (2008) Cryst Growth Des 8:1097

    Article  CAS  Google Scholar 

  41. Murray LJ, Dinca M, Long JR (2009) Chem Soc Rev 38:1294

    Article  PubMed  CAS  Google Scholar 

  42. Sun YQ, Zhang J, Yang GY (2006) Chem Commun 4700

  43. Zhao B, Chen XY, Chen Z, Shi W, Cheng P, Yan SP (2009) Chem Commun 3113

  44. Zhao XQ, Zhao B, Shi W, Cheng P (2009) Cryst Eng Commun 11:1261

    CAS  Google Scholar 

  45. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Chem Soc Rev 38:1450

    Article  PubMed  CAS  Google Scholar 

  46. Ma L, Abney C, Lin W (2009) Chem Soc Rev 38:1248

    Article  PubMed  CAS  Google Scholar 

  47. Huxford RC, Rocca JD, Lin W (2010) Curr Opin Chem Biol 14:262

    Article  PubMed  CAS  Google Scholar 

  48. Rocca JD, Liu D, Lin W (2011) Acc Chem Res 44:957

    Article  PubMed  Google Scholar 

  49. Pu F, Liu X, Xu B, Ren J, Qu X (2012) Chem Eur J 18:4322

    Article  PubMed  CAS  Google Scholar 

  50. Mishra A, Ali A, Upreti S, Gupta R (2008) Inorg Chem 47:154

    Article  PubMed  CAS  Google Scholar 

  51. Mishra A, Ali A, Upreti S, Whittingham MS, Gupta R (2009) Inorg Chem 48:5234

    Article  PubMed  CAS  Google Scholar 

  52. Singh AP, Gupta R (2010) Eur J Inorg Chem 4546

  53. Kumar G, Singh AP, Gupta R (2010) Eur J Inorg Chem 5103

  54. Singh AP, Ali A, Gupta R (2010) Dalton Trans 39:8135

    Article  PubMed  CAS  Google Scholar 

  55. Singh AP, Kumar G, Gupta R (2011) Dalton Trans 40:12454

    Article  PubMed  CAS  Google Scholar 

  56. Mishra A, Kaushik NK, Verma AK, Gupta R (2008) Eur J Med Chem 43:2189

    Article  PubMed  CAS  Google Scholar 

  57. Perrin DD, Armarego WLF, Perrin DR (1980) Purification of laboratory chemicals. Pergamon, Oxford

    Google Scholar 

  58. Oxford Diffraction (2009) CrysAlisPro, version 1.171.33.49b. Oxford Diffraction, Abingdon

  59. Farrugia LJ (2003) WinGX version 1.64, an integrated system of windows programs for the solution, refinement and analysis of single-crystal X-ray diffraction data. University of Glasgow, Glasgow

  60. Singh AP, Kaushik NK, Verma AK, Hundal G, Gupta R (2009) Eur J Med Chem 44:1607

    Article  PubMed  CAS  Google Scholar 

  61. Mosmann T (1983) J Immunol Methods 65:55

    Article  PubMed  CAS  Google Scholar 

  62. Zheng L-W, Wu L-L, Zhao B-X, Dong W-L, Miao J-Y (2009) Bioorg Med Chem 17:1957

    Article  PubMed  CAS  Google Scholar 

  63. Hoffman RM (1991) J Clin Lab Anal 5:133

    Article  PubMed  CAS  Google Scholar 

  64. Wang J-J, Shen Y-K, Hu W-P, Hsieh M-C, Lin F-L, Hsu M-K, Hsu M-H (2006) J Med Chem 49:1442

    Article  PubMed  CAS  Google Scholar 

  65. Singh S, Dwarakanath BS, Mathew TL (2004) J Photochem Photobiol B Biol 77:45

    CAS  Google Scholar 

  66. Yanagihara K, Nii M, Nuot K, Kamiya P, Tauchi T, Sawada T, Seito T (1995) Int J Radiat Biol 77:677

    Article  Google Scholar 

  67. Countryman PI, Heddle JA (1976) Mutation Res 41:321

    Article  PubMed  CAS  Google Scholar 

  68. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  69. Geary WJ (1971) Coord Chem Rev 7:81

    Article  CAS  Google Scholar 

  70. Jensen AW, O’Brien BA (2001) J Chem Ed 78:954

    Article  CAS  Google Scholar 

  71. Yang L, Powell DR, Houser RP (2007) Dalton Trans 955

  72. Poojary MD, Manohar H (1984) Inorg Chim Acta 93:153

    Article  CAS  Google Scholar 

  73. Burchell TJ, Eisler DJ, Puddephatt RJ (2004) Inorg Chem 43:5550

    Article  PubMed  CAS  Google Scholar 

  74. Henry M, Hosseini MW (2004) New J Chem 28:897

    Article  CAS  Google Scholar 

  75. Bricks JL, Reck G, Rurack K, Schlz B, Spieless M (2003) Supramol Chem 15:189

    Article  CAS  Google Scholar 

  76. Husain A, Nami SAA, Siddiqi KS (2010) J Mol Struct 970:117

    Article  CAS  Google Scholar 

  77. Tabassum S, Zaki M, Arjmand F, Ahmad I (2012) J Photochem Photobiol B Biol 114:108

    Article  CAS  Google Scholar 

  78. Aliyu AO, Adamu H, Maikajes DB (2012) Glob J Sci Front Res Chem 12:20

    Google Scholar 

  79. Tabassum S, Khan RA, Arjmand F, Aziz M, Juvekar AS, Zingde SM (2011) Carbohydr Res 346:2886

    Article  PubMed  CAS  Google Scholar 

  80. Narla RK, Chen C-L, Dong Y, Uckun FM (2001) Clin Cancer Res 7:2124

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

R.G. gratefully acknowledges financial support from the Department of Science & Technology (DST), Government of India. The authors thank the CIF-USIC of the University of Delhi for instrumental facilities. N.K.K. thanks the ACBR for laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Gupta.

Additional information

N. K. Kaushik and A. Mishra have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 177 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushik, N.K., Mishra, A., Ali, A. et al. Synthesis, characterization, and antibacterial and anticancer screening of {M2+–Co3+–M2+} and {Co3+–M2+} (M is Zn, Cd, Hg) heterometallic complexes. J Biol Inorg Chem 17, 1217–1230 (2012). https://doi.org/10.1007/s00775-012-0937-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0937-5

Keywords

Navigation