Skip to main content
Log in

The DNA sequence specificity of bleomycin cleavage in telomeric sequences in human cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Bleomycin is an antibiotic drug that is widely used in cancer chemotherapy. Telomeres are located at the ends of chromosomes and comprise the tandemly repeated DNA sequence (GGGTTA) n in humans. Since bleomycin cleaves DNA at 5′-GT dinucleotide sequences, telomeres are expected to be a major target for bleomycin cleavage. In this work, we determined the DNA sequence specificity of bleomycin cleavage in telomeric sequences in human cells. This was accomplished using a linear amplification procedure, a fluorescently labelled oligonucleotide primer and capillary gel electrophoresis with laser-induced fluorescence detection. This represents the first occasion that the DNA sequence specificity of bleomycin cleavage in telomeric DNA sequences in human cells has been reported. The bleomycin DNA sequence selectivity was mainly at 5′-GT dinucleotides, with lesser amounts at 5′-GG dinucleotides. The cellular bleomycin telomeric DNA damage was also compared with bleomycin telomeric damage in purified human genomic DNA and was found to be very similar. The implications of these results for the understanding of bleomycin’s mechanism of action in human cells are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CGE–LIF:

Capillary gel electrophoresis with laser-induced fluorescence detection

ddATP:

Dideoxyadenosine triphosphate

ddCTP:

Dideoxycytidine triphosphate

References

  1. Umezawa H, Maeda K, Takeuchi T, Okami Y (1966) J Antibiot 19:200–209

    PubMed  CAS  Google Scholar 

  2. Umezawa H, Suhara Y, Takita T, Maeda K (1966) J Antibiot 19:210–215

    PubMed  CAS  Google Scholar 

  3. Blum RH, Carter SK, Agre K (1973) Cancer 31:903–914

    Article  PubMed  CAS  Google Scholar 

  4. Chen J, Stubbe J (2004) Curr Opin Chem Biol 8:175–181

    Article  PubMed  CAS  Google Scholar 

  5. Stoter G, Kaye SB, de Mulder PH, Levi J, Raghavan D (1994) J Clin Oncol 12:644–645

    PubMed  CAS  Google Scholar 

  6. Einhorn LH (2002) Proc Natl Acad Sci USA 99:4592–4595

    Article  PubMed  CAS  Google Scholar 

  7. Suzuki H, Nagai K, Yamaki H, Tanaka N, Umezawa H (1969) J Antibiot 22:446–448

    Article  PubMed  CAS  Google Scholar 

  8. Goodwin KD, Lewis MA, Long EC, Georgiadis MM (2008) Proc Natl Acad Sci USA 105:5052–5056

    Article  PubMed  CAS  Google Scholar 

  9. Galm U, Hager MH, Van Lanen SG, Ju J, Thorson JS, Shen B (2005) Chem Rev 105:739–758

    Article  PubMed  CAS  Google Scholar 

  10. Dabrowiak JC (1980) J Inorg Biochem 13:317–337

    Article  CAS  Google Scholar 

  11. Stubbe J, Kozarich JW, Wu W, Vanderwall DE (1996) Acc Chem Res 29:322–330

    Article  CAS  Google Scholar 

  12. Sugiura Y, Ishizu K, Miyoshi K (1979) J Antibiot 32:453–461

    Article  PubMed  CAS  Google Scholar 

  13. Burger RM, Peisach J, Horwitz SB (1981) J Biol Chem 256:11636–11644

    PubMed  CAS  Google Scholar 

  14. Burger RM, Peisach J, Horwitz SB (1981) Life Sci 28:715–727

    Article  PubMed  CAS  Google Scholar 

  15. Vig BK, Lewis R (1978) Mutat Res 55:121–145

    Article  PubMed  CAS  Google Scholar 

  16. Giloni L, Takeshita M, Johnson F, Iden C, Grollman AP (1981) J Biol Chem 256:8608–8615

    PubMed  CAS  Google Scholar 

  17. Burger RM (1998) Chem Rev 98:1153–1170

    Article  PubMed  CAS  Google Scholar 

  18. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) Proc Natl Acad Sci USA 85:6622–6626

    Article  PubMed  CAS  Google Scholar 

  19. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, Harlow

    Google Scholar 

  20. Hiyama K (2009) Telomeres and telomerase in cancer. Springer, New York

    Book  Google Scholar 

  21. Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW, Raap AK, Tanke HJ (1996) Hum Mol Genet 5:685–691

    Article  PubMed  CAS  Google Scholar 

  22. de Lange T (2004) Nat Rev Mol Cell Biol 5:323–329

    Article  PubMed  Google Scholar 

  23. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Cell 97:503–514

    Article  PubMed  CAS  Google Scholar 

  24. Bilaud T, Brun C, Ancelin K, Koering CE, Laroche T, Gilson E (1997) Nat Genet 17:236–239

    Article  PubMed  CAS  Google Scholar 

  25. Kim SH, Kaminker P, Campisi J (1999) Nat Genet 23:405–412

    Article  PubMed  CAS  Google Scholar 

  26. Liu D, Safari A, O’Connor MS, Chan DW, Laegeler A, Qin J, Songyang Z (2004) Nat Cell Biol 6:673–680

    Article  PubMed  CAS  Google Scholar 

  27. Houghtaling BR, Cuttonaro L, Chang W, Smith S (2004) Curr Biol 14:1621–1631

    Article  PubMed  CAS  Google Scholar 

  28. Ponti M, Forrow SM, Souhami RL, D’Incalci M, Hartley JA (1991) Nucleic Acids Res 19:2929–2933

    Article  PubMed  CAS  Google Scholar 

  29. Murray V (2000) Prog Nucleic Acid Res Mol Biol 63:367–415

    Article  CAS  Google Scholar 

  30. Paul M, Murray V (2011) J Biol Inorg Chem 16:735–743

    Article  PubMed  CAS  Google Scholar 

  31. Murray V, Kandasamy N (2012) Anticancer Agents Med Chem 12:177–181

    Article  PubMed  CAS  Google Scholar 

  32. Murray V, Nguyen TV, Chen JK (2012) Chem Biol Drug Design 80:1–8

    Article  CAS  Google Scholar 

  33. Nguyen TV, Murray V (2012) J Biol Inorg Chem 17:1–9

    Article  PubMed  CAS  Google Scholar 

  34. Paul M, Murray V (2012) Biomed Chromatogr 26:350–354

    PubMed  CAS  Google Scholar 

  35. Mascharak PK, Sugiura Y, Kuwahara J, Suzuki T, Lippard SJ (1983) Proc Natl Acad Sci USA 80:6795–6798

    Article  PubMed  CAS  Google Scholar 

  36. Murray V, Martin RF (1985) Nucleic Acids Res 13:1467–1481

    Article  PubMed  CAS  Google Scholar 

  37. Murray V, Tan L, Matthews J, Martin RF (1988) J Biol Chem 263:12854–12859

    PubMed  CAS  Google Scholar 

  38. Murray V, Martin RF (1985) J Biol Chem 260:10389–10391

    PubMed  CAS  Google Scholar 

  39. Cairns MJ, Murray V (1996) Biochemistry 35:8753–8760

    Article  PubMed  CAS  Google Scholar 

  40. Kim A, Murray V (2000) Int J Biochem Cell Biol 32:695–702

    Article  PubMed  CAS  Google Scholar 

  41. Kim A, Murray V (2001) Int J Biochem Cell Biol 33:1183–1192

    Article  PubMed  CAS  Google Scholar 

  42. Magnuson VL, Ally DS, Nylund SJ, Karanjawala ZE, Rayman JB, Knapp JI, Lowe AL, Ghosh S, Collins FS (1996) Biotechniques 21:700–709

    PubMed  CAS  Google Scholar 

  43. Kross J, Henner WD, Hecht SM, Haseltine WA (1982) Biochemistry 21:4310–4318

    Article  PubMed  CAS  Google Scholar 

  44. Nightingale KP, Fox KR (1993) Nucleic Acids Res 21:2549–2555

    Article  PubMed  CAS  Google Scholar 

  45. Temple MD, Freebody J, Murray V (2004) Biochim Biophys Acta 1678:126–134

    Article  PubMed  CAS  Google Scholar 

  46. Temple MD, Murray V (2005) Int J Biochem Cell Biol 37:665–678

    Article  PubMed  CAS  Google Scholar 

  47. Burstyn JN, Heiger-Bernays WJ, Cohen SM, Lippard SJ (2000) Nucleic Acids Res 28:4237–4243

    Article  PubMed  CAS  Google Scholar 

  48. Desmaze C, Soria JC, Freulet-Marriere MA, Mathieu N, Sabatier L (2003) Cancer Lett 194:173–182

    Article  PubMed  CAS  Google Scholar 

  49. Hurley LH (2002) Nat Rev Cancer 2:188–200

    Article  PubMed  CAS  Google Scholar 

  50. Sanchez J, Bianchi MS, Bolzan AD (2009) Mutat Res 669:139–146

    Article  PubMed  CAS  Google Scholar 

  51. Bolzan AD, Bianchi MS (2004) Mutat Res 554:1–8

    Article  PubMed  CAS  Google Scholar 

  52. Rubio MA, Davalos AR, Campisi J (2004) Exp Cell Res 298:17–27

    Article  PubMed  CAS  Google Scholar 

  53. Bolzan AD, Paez GL, Bianchi MS (2001) Mutat Res 479:187–196

    Article  PubMed  CAS  Google Scholar 

  54. Flaque MC, Bianchi MS, Bolzan AD (2006) Environ Mol Mutagen 47:674–681

    Article  PubMed  CAS  Google Scholar 

  55. Benkhaled L, Xuncla M, Caballin MR, Barrios L, Barquinero JF (2008) Mutat Res 637:134–141

    Article  PubMed  CAS  Google Scholar 

  56. Wick U, Gebhart E (2005) Int J Mol Med 16:463–469

    PubMed  CAS  Google Scholar 

  57. Wick U, Gebhart E (2005) Int J Oncol 26:1707–1713

    PubMed  CAS  Google Scholar 

  58. Arutyunyan R, Gebhart E, Hovhannisyan G, Greulich KO, Rapp A (2004) Mutagenesis 19:403–408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Support of this work by the Science Faculty Research Grant Scheme of the University of New South Wales is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, H.T.Q., Murray, V. The DNA sequence specificity of bleomycin cleavage in telomeric sequences in human cells. J Biol Inorg Chem 17, 1209–1215 (2012). https://doi.org/10.1007/s00775-012-0934-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0934-8

Keywords

Navigation