Skip to main content

Advertisement

Log in

Inhibition of transcription by platinated triplex-forming oligonucleotides

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Platinated triplex-forming oligonucleotides (TFOs) consisting of 2′-methoxythymidine and 2′-methoxy-5-methylcytidine and an N-7 platinated deoxyguanosine (PtG) at the 5′-(PtG-TFO), 3′-(TFO-GPt), or 3′- and 5′-(PtG-TFO-GPt) ends of the TFO form mono-(PtG-TFO and TFO-GPt) and interstrand (PtG-TFO-GPt) cross-links with target DNA as a result of reaction of the PtG with guanines adjacent to the homopurine TFO binding site in the target. The extent of cross-linking is greatest when the PtG is located on the 3′ end of the TFO and the target guanine is on the same strand as the TFO binding site. Multiple, contiguous deoxyguanosines in the TFO binding site or a cytosine adjacent to the GPt of the TFO significantly reduce cross-linking. DNA reporter plasmids in which platinated TFOs were cross-linked at a site in the transcribed region between a CMV promoter and a luciferase reporter gene were transfected into Chinese hamster ovary cells, and luciferase expression was compared with that for the corresponding non-cross-linked plasmid. Luciferase expression was inhibited 95 % when TFO-GPt was bound and cross-linked to the transcribed strand, demonstrating that the cross-linked TFO was able to block transcription elongation. Further inhibition (99 %) was observed in nucleotide excision repair (NER) deficient cells, suggesting that NER may repair this lesion. The 3′-GPt group of TFO-GPt protects the TFO from degradation by exonucleases found in mammalian serum. Taken together, these results suggest that platinated TFOs of the type TFO-GPt may find applications as agents for suppressing DNA transcription and consequently inhibiting gene expression in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Felsenfeld G, Davies DR, Rich A (1957) J Am Chem Soc 79:2023–2024

    Article  CAS  Google Scholar 

  2. Hoogsteen K (1959) Acta Crystallogr A 12:822–823

    Article  CAS  Google Scholar 

  3. Radhakrishnan I, Patel DJ (1994) Biochemistry 33:11405–11416

    Article  PubMed  CAS  Google Scholar 

  4. Mayfield C, Ebbinghaus S, Gee J, Jones D, Rodu B, Squibb M, Miller D (1994) J Biol Chem 269:18232–18238

    PubMed  CAS  Google Scholar 

  5. Gee JE, Blume S, Snyder RC, Ray R, Miller DM (1992) J Biol Chem 267:11163–11167

    PubMed  CAS  Google Scholar 

  6. Maher LJ 3rd, Wold B, Dervan PB (1989) Science 245:725–730

    Article  PubMed  CAS  Google Scholar 

  7. Cooney M, Czernuszewicz G, Postel EH, Flint SJ, Hogan ME (1988) Science 241:456–459

    Article  PubMed  CAS  Google Scholar 

  8. Kim HG, Reddoch JF, Mayfield C, Ebbinghaus S, Vigneswaran N, Thomas S, Jones DE Jr, Miller DM (1998) Biochemistry 37:2299–2304. doi:10.1021/bi9718191

    Article  PubMed  CAS  Google Scholar 

  9. Escude C, Sun JS, Rougee M, Garestier T, Helene C (1992) C R Acad Sci III 315:521–525

    PubMed  CAS  Google Scholar 

  10. Shen C, Buck A, Polat B, Schmid-Kotsas A, Matuschek C, Gross HJ, Bachem M, Reske SN (2003) Cancer Gene Ther 10:403–410. doi:10.1038/sj.cgt.7700581

    Article  PubMed  CAS  Google Scholar 

  11. Faria M, Wood CD, Perrouault L, Nelson JS, Winter A, White MR, Helene C, Giovannangeli C (2000) Proc Natl Acad Sci USA 97:3862–3867

    Google Scholar 

  12. Young SL, Krawczyk SH, Matteucci MD, Toole JJ (1991) Proc Natl Acad Sci USA 88:10023–10026

    Article  PubMed  CAS  Google Scholar 

  13. Colombier C, Lippert B, Leng M (1996) Nucleic Acids Res 24:4519–4524

    Google Scholar 

  14. Campbell MA, Miller PS (2009) Bioconjug Chem 20:2222–2230. doi:10.1021/bc900008s

    Article  PubMed  CAS  Google Scholar 

  15. Kibbe WA (2010) Oligo Calc: oligonucleotide properties calculator. http://www.basic.northwestern.edu/biotools/oligocalc.html. Accessed 25 Aug 2010

  16. Wu P, Hara H, Kawamoto Y, Sugimoto N (2001) Nucleic Acids Res Suppl 1:39–40

    Google Scholar 

  17. Howard FB, Frazier J, Lipsett NM, Miles HT (1964) Biochem Biophys Res Commun 17:93–102

    Article  CAS  Google Scholar 

  18. Lee JS, Johnson DA, Morgan AR (1979) Nucleic Acids Res 6:3073–3091

    Article  PubMed  CAS  Google Scholar 

  19. Leitner D, Schroder W, Weisz K (2000) Biochemistry 39:5886–5892

    Google Scholar 

  20. Lee JS, Woodsworth ML, Latimer LJ, Morgan AR (1984) Nucleic Acids Res 12:6603–6614

    Article  PubMed  CAS  Google Scholar 

  21. Moser HE, Dervan PB (1987) Science 238:645–650

    Article  PubMed  CAS  Google Scholar 

  22. Bernal-Méndez E, Sun JS, González-Vílchez F, Leng M (1998) New J Chem 22:1479–1483

    Google Scholar 

  23. Miller PS, Bhan P, Cushman CD, Trapane TL (1992) Biochemistry 31:6788–6793

    Article  PubMed  CAS  Google Scholar 

  24. Mergny JL, Sun JS, Rougee M, Montenay-Garestier T, Barcelo F, Chomilier J, Helene C (1991) Biochemistry 30:9791–9798

    Article  PubMed  CAS  Google Scholar 

  25. Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM (2000) Mol Cell Biol 20:990–1000

    Article  PubMed  CAS  Google Scholar 

  26. Kalish JM, Seidman MM, Weeks DL, Glazer PM (2005) Nucleic Acids Res 33:3492–3502. doi:10.1093/nar/gki659

    Article  PubMed  CAS  Google Scholar 

  27. Lange SS, Reddy MC, Vasquez KM (2009) DNA Repair (Amst) 8:865–872. doi:10.1016/j.dnarep.2009.04.001

    Article  CAS  Google Scholar 

  28. Thoma BS, Wakasugi M, Christensen J, Reddy MC, Vasquez KM (2005) Nucleic Acids Res 33:2993–3001. doi:10.1093/nar/gki610

    Article  PubMed  CAS  Google Scholar 

  29. De Silva IU, McHugh PJ, Clingen PH, Hartley JA (2000) Mol Cell Biol 20:7980–7990

    Article  PubMed  Google Scholar 

  30. Kuraoka I, Kobertz WR, Ariza RR, Biggerstaff M, Essigmann JM, Wood RD (2000) J Biol Chem 275:26632–26636. doi:10.1074/jbc.C000337200

    Article  PubMed  CAS  Google Scholar 

  31. Majumdar A, Khorlin A, Dyatkina N, Lin FL, Powell J, Liu J, Fei Z, Khripine Y, Watanabe KA, George J, Glazer PM, Seidman MM (1998) Nat Genet 20:212–214. doi:10.1038/2530

    Article  PubMed  CAS  Google Scholar 

  32. Tidd DM, Warenius HM (1989) Br J Cancer 60:343–350

    Article  PubMed  CAS  Google Scholar 

  33. Prater CE, Miller PS (2004) Bioconjug Chem 15:498–507. doi:10.1021/bc049977+

    Article  PubMed  CAS  Google Scholar 

  34. Levis JT, Miller PS (1994) Antisense Res Dev 4:231–241

    PubMed  CAS  Google Scholar 

  35. Sproat BS, Lamond AI, Beijer B, Neuner P, Ryder U (1989) Nucleic Acids Res 17:3373–3386

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M.K.G. is a Hopkins Sommer Scholar and was supported in part by a training grant from the National Cancer Institute (T32 CA009110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Miller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, M.K., Miller, P.S. Inhibition of transcription by platinated triplex-forming oligonucleotides. J Biol Inorg Chem 17, 1197–1208 (2012). https://doi.org/10.1007/s00775-012-0933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0933-9

Keywords

Navigation