Skip to main content
Log in

Nitrative and oxidative modifications of enolase are associated with iron in iron-overload rats and in vitro

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Iron overload is one of the most common iron-related toxicities, and liver is the major organ that is injured. Although oxidative stress is well accepted in the pathological mechanism of iron overload, nitrative modification in liver and the role of iron are relatively unknown. In this work, the nitrative and oxidative stress in liver was investigated in an iron-overload rat model. It was found that after 15 weeks of iron dextran administration, consistent with the increase of iron content in rat liver, both protein tyrosine nitration and protein oxidation were clearly elevated. By means of immunoprecipitation analysis, it was found that enolase nitration and oxidation status were significantly increased in iron-overload liver, whereas both α-enolase expression and activity were clearly decreased. The effects of different forms of iron on NaNO2–H2O2- and peroxynitrite (ONOO)-dependent enolase nitration and oxidation were further investigated in vitro to elucidate the possible role of iron in enolase dysfunction in vivo. Compared with EDTA–Fe(III), ferric citrate, and ferritin, heme (hemin and hemoglobin) showed higher efficiency in catalyzing protein nitration in both models. Besides the major contribution of free iron (Fe2+ and Fe3+) to catalyze protein oxidation, Fe2+ also directly acted as a competitive inhibitor and produced a significant decrease in enzyme activity. These results suggest that the existence of various forms of iron is an important contributing factor to the elevated nitrative/oxidative modifications and diminished activity of α-enolase in the development and progress of iron-overload-associated syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Finch C (1994) Blood 84:1697–1702

    PubMed  CAS  Google Scholar 

  2. Wijayanti N, Katz N, Immenschuh S (2004) Curr Med Chem 11:981–986

    Article  PubMed  CAS  Google Scholar 

  3. Papanikolaou G, Pantopoulos K (2005) Toxicol Appl Pharmacol 202:199–211

    Article  PubMed  CAS  Google Scholar 

  4. Galaris D, Pantopoulos K (2008) Crit Rev Clin Lab Sci 45:1–23

    Article  PubMed  CAS  Google Scholar 

  5. Welch KD, Davis TZ, Van Eden ME, Aust SD (2002) Free Radic Biol Med 32:577–583

    Article  PubMed  CAS  Google Scholar 

  6. Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J (2008) Int J Hematol 88:7–15

    Article  PubMed  CAS  Google Scholar 

  7. Swanson CA (2003) Alcohol 30:99–102

    Article  PubMed  CAS  Google Scholar 

  8. Pacher P, Beckman JS, Liaudet L (2007) Physiol Rev 87:315–424

    Article  PubMed  CAS  Google Scholar 

  9. Radi R (2004) Proc Natl Acad Sci USA 101:4003–4008

    Article  PubMed  CAS  Google Scholar 

  10. Peluffo G, Radi R (2007) Cardiovasc Res 75:291–302

    Article  PubMed  CAS  Google Scholar 

  11. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Clin Chim Acta 329:23–38

    Article  PubMed  CAS  Google Scholar 

  12. Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB, Markesbery WR, Butterfield DA (2006) Neurobiol Dis 22:76–87

    Article  PubMed  CAS  Google Scholar 

  13. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, Butterfield DA (2006) Neurobiol Aging 27:1564–1576

    Article  PubMed  CAS  Google Scholar 

  14. Lu N, Zhang Y, Li H, Gao Z (2010) Free Radic Biol Med 48:873–881

    Article  PubMed  CAS  Google Scholar 

  15. Pancholi V (2001) Cell Mol Life Sci 58:902–920

    Article  PubMed  CAS  Google Scholar 

  16. Olas B, Saluk-Juszczak J, Nowak P, Glowacki R, Bald E, Wachowicz B (2007) Nutrition 23:164–171

    Article  PubMed  CAS  Google Scholar 

  17. Bradford MM (1976) Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  18. Agarwal S, Kulshreshtha P, Bambah Mukku D, Bhatnagar R (2008) Biochim Biophys Acta 1784:986–994

    PubMed  CAS  Google Scholar 

  19. Zhao Yu, Li H, Gao Z, Xu H (2005) Eur J Pharmacol 509:195–200

    Article  PubMed  CAS  Google Scholar 

  20. Tam TF, Leung-Toung R, Li W, Wang Y, Karimian K, Spino M (2003) Curr Med Chem 10:983–995

    Article  PubMed  CAS  Google Scholar 

  21. Kalinowski DS, Richardson DR (2005) Pharmacol Rev 57:547–583

    Article  PubMed  CAS  Google Scholar 

  22. Lu N, Zhou G, Pei D, Yi L, Gao Z (2009) Toxicol In Vitro 23:1227–1233

    Article  PubMed  CAS  Google Scholar 

  23. Bartesaghi S, Trujillo M, Denicola A, Folkes L, Wardman P, Radi R (2004) Free Radic Biol Med 36:471–483

    Article  PubMed  CAS  Google Scholar 

  24. Comporti M, Signorini C, Buonocore G, Ciccoli L (2002) Free Radic Biol Med 32:568–576

    Article  PubMed  CAS  Google Scholar 

  25. Brewer JM (1985) FEBS Lett 182:8–14

    Article  CAS  Google Scholar 

  26. Lee ME, Nowak T (1992) Biochemistry 31:2172–2180

    Article  PubMed  CAS  Google Scholar 

  27. Templeton DM, Liu Y (2003) Biochim Biophys Acta 1619:113–124

    PubMed  CAS  Google Scholar 

  28. Petrak J, Myslivcova D, Man P, Cmejla R, Cmejlova J, Vyoral D (2006) Am J Physiol Gastrointest Liver Physiol 290:G1059–G1066

    Article  PubMed  CAS  Google Scholar 

  29. Tosco A, Siciliano RA, Cacace G, Mazzeo MF, Capone R, Malorni A, Leone A, Marzullo L (2005) J Proteome Res 4:1781–1788

    Article  PubMed  CAS  Google Scholar 

  30. Chen HJ, Chang CM, Lin WP, Cheng DL, Leong MI (2008) Chembiochem 9:312–323

    Article  PubMed  CAS  Google Scholar 

  31. Nagababu E, Rifkind JM (2000) Biochemistry 39:12503–12511

    Article  PubMed  CAS  Google Scholar 

  32. Romero N, Radi R, Linares E, Augusto O, Detweiler CD, Mason RP, Denicola A (2003) J Biol Chem 278:44049–44057

    Article  PubMed  CAS  Google Scholar 

  33. Mehl M, Daiber A, Herold S, Shoun H, Ullrich V (1999) Nitric Oxide 3:142–152

    Article  PubMed  CAS  Google Scholar 

  34. Mahammed A, Gross Z (2006) Angew Chem Int Ed 45:6544–6547

    Article  CAS  Google Scholar 

  35. Beckman JS, Ischiropoulos H, Zhu L, van der Woerd M, Smith C, Chen J, Harrison J, Martin JC, Tsai M (1992) Arch Biochem Biophys 298:438–445

    Article  PubMed  CAS  Google Scholar 

  36. Détivaud L, Nemeth E, Boudjema K, Turlin B, Troadec MB, Leroyer P, Ropert M, Jacquelinet S, Courselaud B, Ganz T, Brissot P, Loréal O (2005) Blood 106:746–748

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Nos. 30300073 and 30670481), the Program for New Century Excellent Talents in University (No. NCET-05-0649), and the Fundamental Research Funds for the Central Universities (HUST No. 2010ZD010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghong Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, N., Li, X., Li, J. et al. Nitrative and oxidative modifications of enolase are associated with iron in iron-overload rats and in vitro. J Biol Inorg Chem 16, 481–490 (2011). https://doi.org/10.1007/s00775-010-0747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0747-6

Keywords

Navigation