Skip to main content
Log in

Crystal structures of Streptococcus pyogenes Dpr reveal a dodecameric iron-binding protein with a ferroxidase site

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

DNA-binding protein from starved cells (Dps)-like proteins are key factors involved in oxidative stress protection in bacteria. They bind and oxidize iron, thus preventing the formation of harmful reactive oxygen species that can damage biomolecules, particularly DNA. Dps-like proteins are composed of 12 identical subunits assembled in a spherical structure with a hollow central cavity. The iron oxidation occurs at 12 intersubunit sites located at dimer interfaces. Streptococcus pyogenes Dps-like peroxide resistance protein (Dpr) has been previously found to protect the catalase-lacking S. pyogenes bacterium from oxidative stress. We have determined the crystal structure of S. pyogenes Dpr, the second Dpr structure from a streptococcal bacterium, in iron-free and iron-bound forms at 2.0- and 1.93-Å resolution, respectively. The iron binds to well-conserved sites at dimer interfaces and is coordinated directly to Asp77 and Glu81 from one monomer, His50 from a twofold symmetry-related monomer, a glycerol molecule, and a water molecule. Upon iron binding, Asp77 and Glu81 change conformation. Site-directed mutagenesis of active-site residues His50, His62, Asp66, Asp77, and Glu81 to Ala revealed a dramatic decrease in iron incorporation. A short helix at the N-terminal was found in a different position compared with other Dps-like proteins. Two types of pores were identified in the dodecamer. Although the N-terminal pore was found to be similar to that of other Dps-like proteins, the C-terminal pore was found to be blocked by bulky Tyr residues instead of small residues present in other Dps-like proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Dps:

DNA-binding protein from starved cells

FOC:

Ferroxidase center

PDB:

Protein Data Bank

RMSD:

Root-mean-square deviation

SpDpr:

Streptococcus pyogenes DNA-binding protein from starved cells like peroxide resistance protein

SsDpr:

Streptococcus suis DNA-binding protein from starved cells like peroxide resistance protein

References

  1. Storz G, Imlay JA (1999) Curr Opin Microbiol 2:188–194

    Article  CAS  PubMed  Google Scholar 

  2. Imlay JA (2008) Annu Rev Biochem 77:755–776

    Google Scholar 

  3. Pulliainen AT, Hytonen J, Haataja S, Finne J (2008) J Bacteriol 190:3225–3235

    Article  CAS  PubMed  Google Scholar 

  4. Bozzi M, Mignogna G, Stefanini S, Barra D, Longhi C, Valenti P, Chiancone E (1997) J Biol Chem 272:3259–3265

    Article  CAS  PubMed  Google Scholar 

  5. Roy S, Gupta S, Das S, Sekar K, Chatterji D, Vijayan M (2003) Acta Crystallogr D Biol Crystallogr 59:2254–2256

    Article  PubMed  Google Scholar 

  6. Almirón M, Link AJ, Furlong D, Kolter R (1992) Genes Dev 6:2646–2654

    Article  PubMed  Google Scholar 

  7. Chen L, Helmann JD (1995) Mol Microbiol 18:295–300

    Article  CAS  PubMed  Google Scholar 

  8. Halsey TA, Vazquez-Torres A, Gravdahl DJ, Fang FC, Libby SJ (2004) Infect Immun 72:1155–1158

    Article  CAS  PubMed  Google Scholar 

  9. Nicodeme M, Perrin C, Hols P, Bracquart P, Gaillard JL (2004) Curr Microbiol 48:51–56

    Article  CAS  PubMed  Google Scholar 

  10. Ramsay B, Wiedenheft B, Allen M, Gauss GH, Lawrence CM, Young M, Douglas T (2006) J Inorg Biochem 100:1061–1068

    Article  CAS  PubMed  Google Scholar 

  11. Stillman TJ, Upadhyay M, Norte VA, Sedelnikova SE, Carradus M, Tzokov S, Bullough PA, Shearman CA, Gasson MJ, Williams CH, Artymiuk PJ, Green J (2005) Mol Microbiol 57:1101–1112

    Article  CAS  PubMed  Google Scholar 

  12. Roy S, Gupta S, Das S, Sekar K, Chatterji D, Vijayan M (2004) J Mol Biol 339:1103–1113

    Article  CAS  PubMed  Google Scholar 

  13. Ceci P, Cellai S, Falvo E, Rivetti C, Rossi G, Chiancone E (2004) Nucleic Acids Res 32:5935–5944

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharyya G, Grove A (2007) J Biol Chem 282:11921–11930

    Article  CAS  PubMed  Google Scholar 

  15. Evans DJ Jr, Evans DG, Takemura T, Nakano H, Lampert HC, Graham DY, Granger DN, Kvietys PR (1995) Infect Immun 63:2213–2220

    CAS  PubMed  Google Scholar 

  16. Li X, Pal U, Ramamoorthi N, Liu X, Desrosiers DC, Eggers CH, Anderson JF, Radolf JD, Fikrig E (2007) Mol Microbiol 63:694–710

    CAS  PubMed  Google Scholar 

  17. Harrison PM, Arosio P (1996) Biochim Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  18. Carrondo MA (2003) EMBO J 22:1959–1968

    Article  CAS  PubMed  Google Scholar 

  19. Tsou CC, Chiang-Ni C, Lin YS, Chuang WJ, Lin MT, Liu CC, Wu JJ (2008) Infect Immun 76:4038–4045

    Article  CAS  PubMed  Google Scholar 

  20. Leslie AG (2006) Acta Crystallogr D Biol Crystallogr 62:48–57

    Article  PubMed  Google Scholar 

  21. Collaborative Computational Project Number 4 (1994) Acta Crystallogr D Biol Crystallogr 50:760–763

    Article  Google Scholar 

  22. Stein N (2008) J Appl Crystallogr 41:641–643

    Article  CAS  Google Scholar 

  23. Chen YW, Dodson EJ, Kleywegt GJ (2000) Structure 8:R213–R220

    Article  CAS  PubMed  Google Scholar 

  24. Kauko A, Haataja S, Pulliainen AT, Finne J, Papageorgiou AC (2004) J Mol Biol 338:547–558

    Article  CAS  PubMed  Google Scholar 

  25. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  Google Scholar 

  26. Morris RJ, Perrakis A, Lamzin VS (2003) Methods Enzymol 374:229–244

    Article  CAS  PubMed  Google Scholar 

  27. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  CAS  PubMed  Google Scholar 

  28. Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  29. Krissinel EB, Winn MD, Ballard CC, Ashton AW, Patel P, Potterton EA, McNicholas SJ, Cowtan KD, Emsley P (2004) Acta Crystallogr D Biol Crystallogr 60:2250–2255

    Article  CAS  PubMed  Google Scholar 

  30. Romao CV, Mitchell EP, McSweeney S (2006) J Biol Inorg Chem 11:891–902

    Article  CAS  PubMed  Google Scholar 

  31. Grant RA, Filman DJ, Finkel SE, Kolter R, Hogle JM (1998) Nat Struct Biol 5:294–303

    Article  CAS  PubMed  Google Scholar 

  32. Ilari A, Stefanini S, Chiancone E, Tsernoglou D (2000) Nat Struct Biol 7:38–43

    Article  CAS  PubMed  Google Scholar 

  33. Ren B, Tibbelin G, Kajino T, Asami O, Ladenstein R (2003) J Mol Biol 329:467–477

    Article  CAS  PubMed  Google Scholar 

  34. Roy S, Saraswathi R, Gupta S, Sekar K, Chatterji D, Vijayan M (2007) J Mol Biol 370:752–767

    Article  CAS  PubMed  Google Scholar 

  35. Gauss GH, Benas P, Wiedenheft B, Young M, Douglas T, Lawrence CM (2006) Biochemistry 45:10815–10827

    Article  CAS  PubMed  Google Scholar 

  36. Zanotti G, Papinutto E, Dundon W, Battistutta R, Seveso M, Giudice G, Rappuoli R, Montecucco C (2002) J Mol Biol 323:125–130

    Article  CAS  PubMed  Google Scholar 

  37. Papinutto E, Dundon WG, Pitulis N, Battistutta R, Montecucco C, Zanotti G (2002) J Biol Chem 277:15093–15098

    Article  CAS  PubMed  Google Scholar 

  38. Thumiger A, Polenghi A, Papinutto E, Battistutta R, Montecucco C, Zanotti G (2006) Proteins 62:827–830

    Article  CAS  PubMed  Google Scholar 

  39. Zeth K, Offermann S, Essen LO, Oesterhelt D (2004) Proc Natl Acad Sci USA 101:13780–13785

    Article  CAS  PubMed  Google Scholar 

  40. Kim SG, Bhattacharyya G, Grove A, Lee YH (2006) J Mol Biol 361:105–114

    Article  CAS  PubMed  Google Scholar 

  41. Cuypers MG, Mitchell EP, Romao CV, McSweeney SM (2007) J Mol Biol 371:787–799

    Article  CAS  PubMed  Google Scholar 

  42. Kauko A, Pulliainen AT, Haataja S, Meyer-Klaucke W, Finne J, Papageorgiou AC (2006) J Mol Biol 364:97–109

    Article  CAS  PubMed  Google Scholar 

  43. Ceci P, Ilari A, Falvo E, Chiancone E (2003) J Biol Chem 278:20319–20326

    Article  CAS  PubMed  Google Scholar 

  44. Franceschini S, Ceci P, Alaleona F, Chiancone E, Ilari A (2006) FEBS J 273:4913–4928

    Article  CAS  PubMed  Google Scholar 

  45. Pulliainen AT, Kauko A, Haataja S, Papageorgiou AC, Finne J (2005) Mol Microbiol 57:1086–1100

    Article  CAS  PubMed  Google Scholar 

  46. Ilari A, Ceci P, Ferrari D, Rossi GL, Chiancone E (2002) J Biol Chem 277:37619–37623

    Article  CAS  PubMed  Google Scholar 

  47. Yamamoto Y, Poole LB, Hantgan RR, Kamio Y (2002) J Bacteriol 184:2931–2939

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Academy of Finland for financial support (grant no. 121278 to A.C.P.), the National Science Council, Taiwan, for grants NSC96-2320-B-006-008 and NSC97-2311-B-006-004-MY3 (to J.J.W.), and the European Molecular Biology Laboratory, Hamburg outstation, for access to synchrotron radiation facilities. Support from the European Community—Research Infrastructure Action Under the FP6 (structuring the European Research Area Programme contract number RII3/CT/2004/5060008) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastassios C. Papageorgiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haikarainen, T., Tsou, CC., Wu, JJ. et al. Crystal structures of Streptococcus pyogenes Dpr reveal a dodecameric iron-binding protein with a ferroxidase site. J Biol Inorg Chem 15, 183–194 (2010). https://doi.org/10.1007/s00775-009-0582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0582-9

Keywords

Navigation