Skip to main content

Advertisement

Log in

Ga3+ as a mechanistic probe in Fe3+ transport: characterization of Ga3+ interaction with FbpA

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The obligate human pathogens Haemophilus influenzae, Neisseria gonorrhoeae, and N. meningitidis utilize a highly conserved, three-protein ATP-binding cassette transporter (FbpABC) to shuttle free Fe3+ from the periplasm and across the cytoplasmic membrane. The periplasmic binding protein, ferric binding protein (FbpA), is capable of transporting other trivalent cations, including Ga3+, which, unlike Fe3+, is not redox-active. Because of a similar size and charge as Fe3+, Ga3+ is widely used as a non-redox-active Fe3+ substitute for studying metal complexation in proteins and bacterial populations. The investigations reported here elucidate the similarities and differences in FbpA sequestration of Ga3+ and Fe3+, focusing on metal selectivity and the resulting transport function. The thermodynamic binding constant for Ga3+ complexed with FbpA at pH 6.5, in 50 mM 4-morpholineethanesulfonic acid, 200 mM KCl, 5 mM KH2PO4 was determined by UV-difference spectroscopy as \( \log \,K_{{\text{eff}}}^\prime = 13.7 \pm 0.6. \) This represents a 105-fold weaker binding relative to Fe3+ at identical conditions. The unfolding/refolding behavior of Ga3+ and Fe3+ holo-FbpA were also studied using a matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy technique, stability of unpurified proteins from rates of H/D exchange (SUPREX). This analysis indicates significant differences between Fe3+ and Ga3+ sequestration with regard to protein folding behavior. A series of kinetic experiments established the lability of the Ga3+FbpA–PO4 assembly, and the similarities/differences of stepwise loading of Fe3+ into apo- or Ga3+-loaded FbpA. These biophysical characterization data are used to interpret FbpA-mediated Ga3+ transport and toxicity in cell culture studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Crichton RR (2001) Inorganic biochemistry of iron metabolism: from molecular mechanism to clinical consequences, 2nd edn. Wiley, New York

    Google Scholar 

  2. Cornelissen CN, Sparling PF (2004) Neisseria. In: Crosa JH (ed) Iron transport in bacteria. ASM Press, Washington DC, pp 256–272

    Google Scholar 

  3. Mietzner TA, Tencza SB, Adhikari P, Vaughan KG, Nowalk AJ (1998) In: Vogt PK, Mahan MJ (eds) Current topics microbiology and immunology, vol 225. Springer, Berlin, pp 113–135

    Google Scholar 

  4. Bruns CM, Nowalk AJ, Arvai AS, McTigue MA, Vaughan KG, Mietzner TA, McRee DE (1997) Nat Struct Biol 4(11):919–924

    Article  PubMed  CAS  Google Scholar 

  5. McRee DE, Bruns CM, Williams PA, Mietzner TA, Nunn R (1999) Structural basis of iron uptake in the pathogen Neisseria gonorrhoeae. RCSB Protein Data Bank

  6. Bruns CM, Anderson DA, Vaughan KG, Williams PA, Nowalk AJ, McRee DE, Mietzner TA (2001) Biochemistry 40:15631–15637

    Article  PubMed  CAS  Google Scholar 

  7. Shouldice SR, McRee DE, Dougan DR, Tari LW, Schryvers AB (2005) J Biol Chem 280:5820–5827

    Article  PubMed  CAS  Google Scholar 

  8. Barton LL (2005) Structural and functional relationships in prokayotes. Springer, New York

    Google Scholar 

  9. Guo M, Harvey I, Yang W, Coghill L, Campopiano DJ, Parkinson JA, MacGillivray RTA, Harris WR, Sadler PJ (2003) J Biol Chem 278(4):2490–2502

    Article  PubMed  CAS  Google Scholar 

  10. Shannon RD (1976) Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  11. Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) J Invest Med 117:877–888

    CAS  Google Scholar 

  12. Olakanmi O, Stokes JB, Britigan BE (2005) J Invest Med 53:143–153

    Article  CAS  Google Scholar 

  13. Chikh Z, Ha-Duong N-T, Miquel G, El Hage Chahine JM (2007) J Biol Inorg Chem 12:90–100

    Article  PubMed  CAS  Google Scholar 

  14. van der Helm D (1998) In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 35. Marcel Dekker, New York, pp 355–401

  15. Sun H, Cox MC, Hongyan L, Sadler PJ (1997) In: Hill HAO, Sadler PJ, Thomson AJ (eds) Metal sites in proteins and models: iron centres, vol 88. Springer, Berlin, pp 71–102

    Google Scholar 

  16. Harris WR, Messori L (2002) Coord Chem Rev 228:237–262

    Article  CAS  Google Scholar 

  17. Anderson DS, Adhikari P, Nowalk AJ, Chen CY, Mietzner TA (2004) J Bacteriol 186(18):6220–6229

    Article  PubMed  CAS  Google Scholar 

  18. Taboy CH, Vaughan KG, Mietzner TA, Aisen P, Crumbliss AL (2001) J Biol Chem 276(4):2719–2724

    Article  PubMed  CAS  Google Scholar 

  19. Dhungana S, Taboy CH, Anderson DA, Vaughan KG, Aisen P, Mietzner TA, Crumbliss AL (2003) Proc Natl Acad Sci USA 100(7):3659–3664

    Article  PubMed  CAS  Google Scholar 

  20. Heymann JJ, Weaver KD, Mietzner TA, Crumbliss AL (2007) J Am Chem Soc 129:9704–9712

    Article  PubMed  CAS  Google Scholar 

  21. Anderson DS, Adhikari P, Weaver KD, Crumbliss AL, Mietzner TA (2007) J Bacteriol 189(14):5130–5141

    Article  PubMed  CAS  Google Scholar 

  22. Mietzner TA, Bolan G, Schoolnik GK, Morse SA (1987) J Exp Med 165(4):1041–1057

    Article  PubMed  CAS  Google Scholar 

  23. Bastian R, Weberling R, Palilla F (1956) Anal Chem 28(4):459–462

    Article  CAS  Google Scholar 

  24. Adhikari P, Kirby SD, Nowalk AJ, Veraldi KL, Schryvers AB, Mietzner TA (1995) J Biol Chem 270(42):25142–25149

    Article  PubMed  CAS  Google Scholar 

  25. Adhikari P, Berish SA, Nowalk AJ, Veraldi KL, Morse SA, Mietzner TA (1996) J Bacteriol 178(7):2145–2149

    PubMed  CAS  Google Scholar 

  26. Motekaitis RJ (2001) The National Institute of Standards and Technology (NIST) Standard Reference Database 46, version 6.0

  27. Ferguson SJ (1991) In: Mohan S, Dow C, Coles JA (eds) Prokaryotic structure and function: a new perspective. 47th Symposium of the society for general microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  28. Ringbom A (1963) Complexation in analytical chemistry: a guide for the critical selection of analytical methods based on complexation reactions. Interscience, New York

    Google Scholar 

  29. Ghaemmaghami S, Fitzgerald MC, Oas TG (2000) Proc Natl Acad Sci USA 97:8296–8301

    Article  PubMed  CAS  Google Scholar 

  30. Nozaki Y (1972) Methods Enzymol 26:43–50

    Article  PubMed  CAS  Google Scholar 

  31. Glasoe P, Long FA (1960) J Phys Chem 64:188–190

    Article  CAS  Google Scholar 

  32. Powell KD, Fitzgerald MC (2001) Anal Chem 73:3300–3304

    Article  PubMed  CAS  Google Scholar 

  33. Harris WR, Pecoraro VL (1983) Biochemistry 22:292–299

    Article  PubMed  CAS  Google Scholar 

  34. Harris WR (1986) Biochemistry 25:803–808

    Article  PubMed  CAS  Google Scholar 

  35. Gelb MH, Harris DC (1980) Arch Biochem Biophys 200:93–98

    Article  PubMed  CAS  Google Scholar 

  36. Roulhac PL, Powell KD, Dhungana S, Weaver KD, Mietzner TA, Crumbliss AL, Fitzgerald MC (2004) Biochemistry 43:15767–15774

    Article  PubMed  CAS  Google Scholar 

  37. Gabricevic M, Anderson DA, Mietzner TA, Crumbliss AL (2004) Kinetics and mechanism of iron(III) complexation by ferric binding protein: the role of phosphate. Biochemistry 43:5811–5819

    Article  PubMed  CAS  Google Scholar 

  38. Powell KD, Ghaemmaghami S, Wang MZ, Ma L, Oas TG, Fitzgerald MC (2002) J Am Chem Soc 124:10256–10257

    Article  PubMed  CAS  Google Scholar 

  39. MacGillivray RTA, Moore SA, Chen J, Anderson BF, Baker H, Luo Y, Bewley M, Smith CA, Murphy MEP, Wang Y, Mason AB, Woodworth RC, Brayer GD, Baker EN (1998) Biochemistry 37(22):7919–7928

    Article  PubMed  CAS  Google Scholar 

  40. Harris DC, Aisen P (1989) In: Loehr TM (ed) Physical bioinorganic chemistry. VCH Publishers, New York, pp 239–351

    Google Scholar 

  41. Lachenmann MJ, Ladbury JE, Dong J, Huang K, Carey P, Weiss MA (2004) Biochemistry 43:13910–13925

    Article  PubMed  CAS  Google Scholar 

  42. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry principles of structure and reactivity, 4th edn. Harper Collins College Publishers, New York

    Google Scholar 

  43. Smith DW (1977) J Chem Educ 54(9):540–542

    Article  CAS  Google Scholar 

  44. Zhou W, Merrick BA, Khaledi MG, Tomer KB (2000) J Am Soc Mass Spectrom 11:273–282

    Article  PubMed  CAS  Google Scholar 

  45. LeMaster DM, Anderson JS, Hernandez G (2006) Biochemistry 45:9956–9963

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.L.C. thanks the NSF (CHE 0418006) for financial support. J.J.H. received partial support from an NIH CBTE training grant (T32GM8555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin L. Crumbliss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material (PDF 254 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, K.D., Heymann, J.J., Mehta, A. et al. Ga3+ as a mechanistic probe in Fe3+ transport: characterization of Ga3+ interaction with FbpA. J Biol Inorg Chem 13, 887–898 (2008). https://doi.org/10.1007/s00775-008-0376-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0376-5

Keywords

Navigation