Skip to main content
Log in

Modulation of NO binding to cytochrome c′ by distal and proximal haem pocket residues

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We have cloned and expressed the cycP gene encoding cytochrome c′ from Alcaligenes xylosoxidans and generated mutations in Arg-124 and Phe-59, residues close to the haem, to probe their involvement in modulating the unusual spin-state equilibrium of the haem Fe and the unique proximal mode of binding of NO to form a stable five-coordinate adduct. Arg-124 is located in the proximal pocket of the haem and forms a hydrogen bond to the stable five-coordinated bound NO. Phe-59 provides steric hindrance at the distal face where NO binds initially to form a six-coordinate adduct. Optical spectroscopy showed altered electronic properties of the oxidised haem centre resulting from the mutations of both residues. The high affinity of the ferrous proteins for NO remained unchanged and all of the mutational variants formed a stable five-coordinate NO species (λ Soret 395 nm) in the presence of stoichiometric concentrations of NO. However, the kinetics of the reactivity towards NO were altered, with mutation of the distal Phe-59 residue resulting in the transient six-coordinate distally bound NO adduct (λ Soret 415 nm) not being detected. Surprisingly, substitution of the proximal residue Arg-124 with Phe, Ala, Gln or Glu also resulted in the six-coordinate adduct not being detected, showing that this proximal residue also modulates reactivity towards NO on the opposite haem face. In contrast, the R124L substitution retained the property of the native protein in the initial formation of a six-coordinate NO adduct, a finding of functional importance since a Lys or an Arg residue is invariant in these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rogers KR (1999) Curr Opin Chem Biol 8:158–167

    Article  Google Scholar 

  2. Gilles-Gonzalez M-A, Gonzalez G (2005) J Inorg Biochem 99:1–22

    Article  PubMed  CAS  Google Scholar 

  3. Karow DS, Pan D, Tran R, Pellicena P, Presley A, Mathies RA, Marletta MA (2004) Biochemistry 43:10203–10211

    Article  PubMed  CAS  Google Scholar 

  4. Meyer TE, Kamen MD (1982) Adv Protein Chem 35:105–212

    Article  PubMed  CAS  Google Scholar 

  5. Romão MJ, Archer M (2001) Handbook of metalloproteins. Wiley, Chichester, pp 44–54

    Google Scholar 

  6. Weiss R, Gold A, Terner J (2006) Chem Rev 106:2550–2579

    Article  PubMed  CAS  Google Scholar 

  7. Lawson DM, Stevenson CEM, Andrew CR, Eady RR (2000) EMBO J 19:5661–5671

    Article  PubMed  CAS  Google Scholar 

  8. Cross R, Aish J, Paston SJ, Poole RK, Moir JWB (2000) J Bacteriol 182:1442–1447

    Article  PubMed  CAS  Google Scholar 

  9. Choi PS, Grigoryants VM, Abruña HD, Scholes CP, Shapleigh JP (2005) J Bacteriol 187:4077–4085

    Article  PubMed  CAS  Google Scholar 

  10. Mayburd AL, Kassner RJ (2002) Biochemistry 41:11582–1159

    Article  PubMed  CAS  Google Scholar 

  11. Andrew CR, George SJ, Lawson DL, Eady RR (2002) Biochemistry 41:2353–2360

    Article  PubMed  CAS  Google Scholar 

  12. Makino R, Matsuda H, Obayashi E, Shiro Y, Izuka T, Hori H (1999) J Biol Chem 274:7714–7723

    Article  PubMed  CAS  Google Scholar 

  13. Zhao Y, Brandish PE, Ballou DP, Marletta MA (1999) Proc Natl Acad Sci USA 96:14753–14758

    Article  PubMed  CAS  Google Scholar 

  14. Maltempo MM (1974) J Chem Phys 61:2450–2457

    Article  Google Scholar 

  15. Maltempo MM, Moss TH (1976) Q Rev Biophys 9:181–215

    Article  PubMed  CAS  Google Scholar 

  16. Weber PC (1982) Biochemistry 21:5116–5119

    Article  PubMed  CAS  Google Scholar 

  17. Kruglik SG, Lambry J-C, Cianetti S, Martin J-L, Eady RR, Andrew CR, Negrerie M (2006) J Biol Chem 282:5053–5062

    Article  PubMed  CAS  Google Scholar 

  18. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  19. Arslan E, Schulz H, Zufferet R, Kunzler P, Thony-Meyer L (1998) Biomed Biophys Res Commun 251:744–747

    Article  CAS  Google Scholar 

  20. Zacharia I, Deen W (2005) Ann Biomed Eng 33:214–222

    Article  PubMed  Google Scholar 

  21. Cusanovich MA, Tedro SM, Kamen MD (1970) Arch Biochem Biophys 141:557–570

    Article  PubMed  CAS  Google Scholar 

  22. Thony-Meyer L (1997) Microbiol Molec Biol Rev 337–376

  23. Leon RG, Munier-Lehman H, Barzu O, Baudin-Creuza V, Pietri R, Lopez Garriga J, Cadilla CL (2004) Protein Expr Purif 38:184–195

    PubMed  CAS  Google Scholar 

  24. Barbieri S (2007) PhD thesis, University of Wales, Bangor

  25. Andrew CR, Kemper JL, Busche TL, Tiwari AM, Kecskes MC, Stafford JM, Croft LC, Lu S, Moenne-Loccoz P, Huston W, Moir JWB, Eady RR (2005) Biochemistry 44:8664–8672

    Article  PubMed  CAS  Google Scholar 

  26. Marti MA, Capece L, Crespo A, Doctotovich F, Estrin DA (2005) J Am Chem Soc 127:7721–7728

    Article  PubMed  CAS  Google Scholar 

  27. Yoshimura T (1985) Biochemistry 25:2436–2442

    Article  Google Scholar 

  28. Strekas TC, Spiro TG (1974) Biochim Biophys Acta 351:237–245

    PubMed  CAS  Google Scholar 

  29. George SJ, Andrew CR, Lawson DM, Thorneley RNF, Eady RR (2001) J Am Chem Soc 123:9683–9684

    Article  PubMed  CAS  Google Scholar 

  30. Yoshimura T, Suzuki S, Nakahara A, Iwasaki H, Masuko M, Matsubara T (1985) Biochim Biophys Acta 831:267–274

    PubMed  CAS  Google Scholar 

  31. Yoshimura T (1985) Biochemistry 25:2436–2432

    Article  Google Scholar 

  32. Dobbs JA, Anderson BF, Faber HR, Baker E (1996) Acta Crystallogr Sect D 52:356–361

    Article  CAS  Google Scholar 

  33. Huston WH, Andrew CR, Servid AE, McKay AL, Leech AP, Butler CS, Moir JWB (2006) Biochemistry 45:4388–4395

    Article  PubMed  CAS  Google Scholar 

  34. Martin E, Berka V, Bogatenkova E, Murad F, Tsai A-L (2006) J Biol Chem 281:27836–27845

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank STFC Daresbury laboratory for provision of facilities and resources. S.B. received a studentship from the School of Chemistry, Bangor University. We thank members of the Molecular Biophysics Group for useful discussions and help throughout this work and Mark Ellis for help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Samar Hasnain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbieri, S., Murphy, L.M., Sawers, R.G. et al. Modulation of NO binding to cytochrome c′ by distal and proximal haem pocket residues. J Biol Inorg Chem 13, 531–540 (2008). https://doi.org/10.1007/s00775-008-0341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0341-3

Keywords

Navigation