Skip to main content
Log in

Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Brown algal kelp species are the most efficient iodine accumulators among all living systems, with an average content of 1.0% of dry weight in Laminaria digitata. The iodine distributions in stipe and blade sections from L. digitata were investigated at tissue and subcellular levels. The quantitative tissue mapping of iodine and other trace elements (Cl, K, Ca, Fe, Zn, As and Br) was provided by the proton microprobe with spatial resolutions down to 2 μm. Chemical imaging at a subcellular resolution (below 100 nm) was performed using the secondary ion mass spectrometry microprobe. Sets of samples were prepared by both chemical fixation and cryofixation procedures. The latter prevented the diffusion and the leaching of labile inorganic iodine species, which were estimated at around 95% of the total content by neutron activation analysis. The distribution of iodine clearly shows a huge, decreasing gradient from the meristoderm to the medulla. The contents of iodine reach very high levels in the more external cell layers, up to 191 ± 5 mg g−1 of dry weight in stipe sections. The peripheral tissue is consequently the main storage compartment of iodine. At the subcellular level, iodine is mainly stored in the apoplasm and not in an intracellular compartment as previously proposed. This unexpected distribution may provide an abundant and accessible source of labile iodine species which can be easily remobilized for potential chemical defense and antioxidative activities. According to these imaging data, we proposed new hypotheses for the mechanism of iodine storage in L. digitata tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LOD:

Limit of detection

NAA:

Neutron activation analysis

PIXE:

Particle-induced X-ray emission

RBS:

Rutherford backscattering spectrometry

SIMS:

Secondary ion mass spectrometry

vHPO:

Vanadium-dependent haloperoxidase

VIOCs:

Volatile iodinated organic compounds

vIPO:

Vanadium-dependent iodoperoxidase

XAS:

X-ray absorption spectroscopy

References

  1. Delange F (2002) Eur J Nucl Med Mol Imaging 29(Suppl 2):S404–416

    Article  PubMed  CAS  Google Scholar 

  2. Maberly GF, Haxton DP, van der Haar F (2003) Food Nutr Bull 24:S91–98

    PubMed  Google Scholar 

  3. Walker SP, Wachs TD, Gardner JM, Lozoff B, Wasserman GA, Pollitt E, Carter JA (2007) Lancet 369:145–157

    Article  PubMed  Google Scholar 

  4. Carpenter LJ (2003) Chem Rev 103:4953–4962

    Article  PubMed  CAS  Google Scholar 

  5. Whitehead DC (1985) Environ Int 10:321–339

    Article  Google Scholar 

  6. Fuge R, Johnson C (1986) Environ Geochem Health 8:31–54

    Article  CAS  Google Scholar 

  7. Ar Gall E, Küpper FC, Kloareg B (2004) Bot Mar 47:30–37

    Article  CAS  Google Scholar 

  8. Palmer CJ, Anders TL, Carpenter LJ, Küpper FC, McFiggans GB (2005) Environ Chem 2:282–290

    Article  CAS  Google Scholar 

  9. O’Dowd CD, Jimenez JL, Bahreini R, Flagan RC, Seinfeld JH, Kulmala M, Pirjola L, Hoffmann T (2002) Nature 417:632–636

    Article  PubMed  CAS  Google Scholar 

  10. Saiz-Lopez A, Plane JMC, McFiggans G, Williams PI, Ball SM, Bitter M, Jones RL, Hongwei C, Hoffmann T (2006) Atmos Chem Phys 6:883–895

    Article  CAS  Google Scholar 

  11. Laturnus F, Svensson T, Wiencke C, Oberg G (2004) Environ Sci Technol 38:6605–6609

    Article  PubMed  CAS  Google Scholar 

  12. Potin P, Bouarab K, Küpper F, Kloareg B (1999) Curr Opin Microbiol 2:276–283

    Article  PubMed  CAS  Google Scholar 

  13. Malin G, Küpper FC, Carpenter LJ, Baker A, Broadgate W, Kloareg B, Liss PS (2001) J Phycol 37(Suppl 3):32–33

    Google Scholar 

  14. Kolb CE (2002) Nature 417:632–636

    Article  CAS  Google Scholar 

  15. Lee RE (1980) Phycology. Cambridge University Press, London, pp 481–557

    Google Scholar 

  16. Larsen B, Haug A (1960) Bot Mar 2:250–254

    Google Scholar 

  17. Tong W, Chaikoff IL (1955) J Biol Chem 215:473–484

    PubMed  CAS  Google Scholar 

  18. Roche J, Yagi Y (1952) C R Soc Biol Paris 146:642–645

    PubMed  CAS  Google Scholar 

  19. Hou X, Chai C, Qian Q, Yan X, Fan X (1997) Sci Total Environ 204:215–221

    Article  Google Scholar 

  20. Shah M, Wuilloud RG, Kannamkumaratha SS, Caruso JA (2005) J Anal At Spectrom 20:176–182

    Article  CAS  Google Scholar 

  21. Gottardi W (1999) Archiv Pharm 332:151–157

    Article  CAS  Google Scholar 

  22. Hou X, Yan X, Chai C (2000) J Radioanal Nucl Chem 245:461

    Article  CAS  Google Scholar 

  23. Küpper FC, Schweigert N, Ar Gall E, Legendre J-M, Vilter H, Kloareg B (1998) Planta 207:163–171

    Article  Google Scholar 

  24. Kylin H (1929) Hoppe-Seylers Z Physiol Chem 186:50–84

    CAS  Google Scholar 

  25. Shaw TI (1959) Proc R Soc Lond Ser B150:356–371

    CAS  Google Scholar 

  26. Colin C, Leblanc C, Michel G, Wagner E, Leize-Wagner E, Van Dorsselaer A, Potin P (2005) J Biol Inorg Chem 10:156–166

    Article  PubMed  CAS  Google Scholar 

  27. Colin C, Leblanc C, Wagner E, Delage L, Leize-Wagner E, Van Dorsselaer A, Kloareg B, Potin P (2003) J Biol Chem 278:23545–23552

    Article  PubMed  CAS  Google Scholar 

  28. Leblanc C, Colin C, Cosse A, Delage L, La Barre S, Morin P, Fievet B, Voiseux C, Ambroise Y, Verhaeghe E, Amouroux D, Donard O, Tessier E, Potin P (2006) Biochimie 88:1773–1785

    Article  PubMed  CAS  Google Scholar 

  29. Klotz KH, Benz R (1993) Biophys J 65:2661–2672

    Article  PubMed  CAS  Google Scholar 

  30. Pedersen M, Roomans GM (1983) Bot Mar 26:113–118

    Article  CAS  Google Scholar 

  31. Guerquin-Kern JL, Wu TD, Quintana C, Croisy A (2005) Biochim Biophys Acta 1724:228–238

    PubMed  CAS  Google Scholar 

  32. Lobinski R, Moulin C, Ortega R (2006) Biochimie 88:1591–1604

    Article  PubMed  CAS  Google Scholar 

  33. Ortega R, Moretto P, Fajac A, Benard J, Llabador Y, Simonoff M (1996) Cell Mol Biol (Noisy-le-Grand) 42:77–88

    CAS  Google Scholar 

  34. Guerquin-Kern JL, Hillion F, Madelmont JC, Labarre P, Papon J, Croisy A (2004) Biomed Eng Online 3:10

    Article  PubMed  Google Scholar 

  35. Llabador Y, Moretto P (1998) Applications of nuclear microprobes in the life sciences: an efficient analytical technique for research in biology and medicine. World Scientific, Singapore

    Google Scholar 

  36. Barbotteau Y (2004) http://biopixe.free.fr/SupaVISIO/news.htm

  37. Campbell JL, Hopman TL, Maxwell JA, Nejedly Z (2000) Nucl Instrum Methods Phys Res B 170:193–204

    Article  CAS  Google Scholar 

  38. Mayer M (1997) SIMNRA user’s guide. Max-Planck-Institut für Plasmaphysik, Garching

    Google Scholar 

  39. Clerc J, Fourre C, Fragu P (1997) Cell Biol Int 21:619–633

    Article  PubMed  CAS  Google Scholar 

  40. Rasband WS (1997–2007) ImageJ. http://rsb.info.nih.gov/ij/

  41. Quintana C, Wu TD, Delatour B, Dhenain M, Guerquin-Kern JL, Croisy A (2007) Microsc Res Tech 70:281–295

    Article  PubMed  CAS  Google Scholar 

  42. Saenko GN, Kravtsova YY, Ivanenko VV, Sheludko SI (1978) Mar Biol 47:243–250

    Article  Google Scholar 

  43. Evans LV, Holligan MS (1972) New Phytol 71:1161–1172

    Article  CAS  Google Scholar 

  44. Dangeard P (1928) C R Acad Sci 186:892

    CAS  Google Scholar 

  45. Colin C (2004) PhD report, Ecole doctorale sciences de l’environnement d’Ile-de-France, Université Paris VI, Paris

  46. Almeida M, Filipe S, Humanes M, Maia MF, Melo R, Severino N, da Silva JA, Frausto da Silva JJ, Wever R (2001) Phytochemistry 57:633–642

    Article  PubMed  CAS  Google Scholar 

  47. Carter-Franklin JN, Butler A (2004) J Am Chem Soc 126:15060–15066

    Article  PubMed  CAS  Google Scholar 

  48. Scott R (1954) Nature 173:1098–1099

    Article  CAS  Google Scholar 

  49. Feiters MC, Kupper FC, Meyer-Klaucke W (2005) J Synchrotron Radiat 12:85–93

    Article  PubMed  CAS  Google Scholar 

  50. Küpper FC, Kloareg B, Guern J, Potin P (2001) Plant Physiol 125:278–291

    Article  PubMed  Google Scholar 

  51. Pedersen M, Collen J, Abrahamsson K, Ekdahl A (1996) Sci Mar 60:257–263

    CAS  Google Scholar 

  52. Paul NA, Cole L, de Nys R, Steinberg PD (2006) J Phycol 42:637–645

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the national program Toxicologie Nucléaire Environnementale (TOXNUC-E) and by CEA and CNRS. We are also grateful to CEA and the TOXNUC-E program for PhD fellowships to E.F.V. and A.F.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elodie Françoise Verhaeghe or Philippe Potin.

Additional information

In memory of Dr. Charles Mioskowski, “Miko,” who died on 2 June 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verhaeghe, E.F., Fraysse, A., Guerquin-Kern, JL. et al. Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation. J Biol Inorg Chem 13, 257–269 (2008). https://doi.org/10.1007/s00775-007-0319-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0319-6

Keywords

Navigation