Skip to main content
Log in

Kinetics and mechanism of the substitution reactions of [PtCl(bpma)]+, [PtCl(gly-met-S,N,N)] and their aqua analogues with l-methionine, glutathione and 5′-GMP

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The substitution reactions of [PtCl(bpma)]+, [PtCl(gly-met-S,N,N)], [Pt(bpma)(H2O)]2+ and [Pt(gly-met-S,N,N)(H2O)]+ [where bpma is bis(2-pyridylmethyl)amine and gly-met-S,N,N is glycylmethionine] with l-methionine, glutathione and guanosine 5′-monophosphate (5′-GMP) were studied in aqueous solutions in 0.10 M NaClO4 under pseudo-first-order conditions as a function of concentration and temperature using UV–vis spectrophotometry. The reactions of the chloro complexes were followed in the presence of 10 mM NaCl and at pH ~ 5, whereas the reactions of the aqua complexes were studied at pH 2.5. The [PtCl(bpma)]+ complex is more reactive towards the chosen nucleophiles than [PtCl(gly-met-S,N,N)]. Also, the aqua complexes are more reactive than the corresponding chloro complexes. The activation parameters for all the reactions studied suggest an associative substitution mechanism. The reactions of [PtCl(bpma)]+ and [PtCl(gly-met-S,N,N)] with 5′-GMP were studied by using 1H NMR spectroscopy at 298 K. The pK a value of the [Pt(gly-met-S,N,N)(H2O)]+ complex is 5.95. Density functional theory calculations (B3LYP/LANL2DZp) show that in all cases guanine coordination to the L3Pt fragment (L3 is terpyridine, bpma, diethylenetriamine, gly-met-S,N,N) is much more favorable than the thioether-coordinated form. The calculations collectively support the experimentally observed substitution of thioethers from Pt(II) complexes by N7-GMP. This study throws more light on the mechanistic behavior of platinum antitumor complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The performance of the computational level employed in this study is well documented; for example, see [4046].

References

  1. Wang D, Lippard SJ (2005) Nat Rev Drug Discov 4:307–320

    Article  PubMed  CAS  Google Scholar 

  2. Lippert B (1999) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley, Zurich

  3. Furtes MA, Alonso C, Pérez JM (2003) Chem Rev 103:645–662

    Article  CAS  Google Scholar 

  4. Jakubec MA, Galanski M, Keppler BK (2003) Rev Physiol Biochem Pharmacol 146:1–53

    Article  CAS  Google Scholar 

  5. Esposito BP, Najjar R (2002) Coord Chem Rev 232:137–149

    Article  CAS  Google Scholar 

  6. Wong E, Giandomenico CM (1999) Chem Rev 99:2451–2466

    Article  PubMed  CAS  Google Scholar 

  7. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  PubMed  CAS  Google Scholar 

  8. van Zutphen S, Reedijk J (2005) Coord Chem Rev 249:2845– 2853

    Article  CAS  Google Scholar 

  9. Reedijk J (1999) Chem Rev 99:2499–2510

    Article  PubMed  CAS  Google Scholar 

  10. Reedijk J (2003) Proc Natl Acad Sci USA 100:3611–3616

    Article  PubMed  CAS  Google Scholar 

  11. Zorbas H, Keppler BK (2005) Chembiochem 6:1157–1166

    Article  PubMed  CAS  Google Scholar 

  12. Dor RT (1996) Platinum and other metal coordination compounds in cancer chemotherapy. Plenum, New York, pp 131–154

    Google Scholar 

  13. Soldatović T, Bugarčić ŽD (2005) J Inorg Biochem 99:1472–1479

    Article  PubMed  CAS  Google Scholar 

  14. Bose RN, Moghaddas S, Weaver EL, Cox EH (1995) Inorg Chem 34:5878–5883

    Article  CAS  Google Scholar 

  15. Barnham KJ, Djuran MI, Murdoch PDS, Sadler PJ (1994) J Chem Soc Chem Commun 6:721–722

    Article  Google Scholar 

  16. Teuben JM, van Boom SSGE, Reedijk J (1977) J Chem Soc Dalton Trans 3979–3980

  17. Barnham KJ, Guo Z, Sadler PJ (1996) J Chem Soc Dalton Trans 2867–2876

  18. Barnham KJ, Djuran MI, Murdoch PdS, Ranford JD, Sadler PJ (1995) J Chem Soc Dalton Trans 3721–3276

  19. Teuben JM, Zubiri MRI, Reedijk J (2000) Chem Soc Dalton Trans 369–372

  20. Bugarčić ŽD, Soldatović T, Jelić R, Alguero B, Grandas A (2004) Dalton Trans 22:3869–3877

    Article  PubMed  CAS  Google Scholar 

  21. Bugarčić ŽD, Liehr G, van Eldik R (2002) J Chem Soc Dalton Trans 14:2825–2830

    Article  CAS  Google Scholar 

  22. Bugarčić ŽD, Heinemann FW, van Eldik R (2004) Dalton Trans 2:279–286

    Article  PubMed  CAS  Google Scholar 

  23. Hofmann A, Jaganyi D, Munro QO, Liehr G, van Eldik R (2003) Inorg Chem 42:1688–1700

    Article  PubMed  CAS  Google Scholar 

  24. Guo X, Wang X, Ding J, Lin L, Li Y, Guo Z (2006) Inorg Chem Commun 9:722–726

    Article  CAS  Google Scholar 

  25. Zhang J, Wang X, Tu C, Lin J, Ding J, Lin L, Wang Z, He C, Yan C, You X, Guo Z (2003) J Med Chem 46:3502–3507

    Article  PubMed  CAS  Google Scholar 

  26. Summa N, Schiessl W, Puchta P, van Eikema Hommes N, van Eldik R (2006) Inorg Chem 45:2948–2959

    Article  PubMed  CAS  Google Scholar 

  27. Summa N, Soldatović T, Dahlenburg L, Bugarčić ŽD, van Eldik R (2007) J Biol Inorg Chem 12:461–475

    Article  PubMed  CAS  Google Scholar 

  28. Jaganui D, Tiba F, Munro OQ, Petrović B, Bugarčić ŽD (2006) Dalton Trans 2943–2949

  29. Bugarčić ŽD, Ilić D, Djuran M (2001) Aust J Chem 54:237–240

    Article  Google Scholar 

  30. Appleton TG, Hall JR, Ralph SF, Thompson CSM (1984) Inorg Chem 23:3521–3525

    Article  CAS  Google Scholar 

  31. Mikkelsen K, Nielsen SO (1960) J Phys Chem 64:632–637

    Article  CAS  Google Scholar 

  32. Becke AD (1993) J Phys Chem 97:5648–5652

    Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  34. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  35. Dunning TH Jr, Hay PJ (1976) Mod Theor Chem 3:1–28

    Google Scholar 

  36. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  37. Hay PJ, Wadt WR (1985) J Chem Phys 82:284–298

    Article  Google Scholar 

  38. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  39. Huzinaga S (ed) (1984) Gaussian basis sets for molecular calculations. Elsevier, Amsterdam

  40. Schiessl W, Puchta R, Bugarčić ŽD, Heinemann FW, van Eldik R (2007) Eur J Inorg Chem:1390–1404

  41. Galle M, Puchta R, van Eikema Hommes NJR, van Eldik R (2006) Z Phys Chem 220:511–523

    CAS  Google Scholar 

  42. Puchta R, Meier R, van Eikema Hommes NJR, van Eldik R (2006) Eur J Inorg Chem 4063–4067

  43. Scheurer A, Maid H, Hampel F, Saalfrank RW, Toupet L, Mosset P, Puchta R, van Eikema Hommes NJR (2005) Eur J Org Chem 2566–2574

  44. Illner P, Zahl A, Puchta R, van Eikema Hommes N, Wasserscheid P, van Eldik R (2005) J Organomet Chem 690:3567–3576

    Article  CAS  Google Scholar 

  45. Weber ChF, Puchta R, van Eikema Hommes N, Wasserscheid P, van Eldik R (2005) Angew Chem 117:6187–6192

    Article  Google Scholar 

  46. Weber ChF, Puchta R, van Eikema Hommes N, Wasserscheid P, van Eldik R (2005) Angew Chem Int Ed Engl 44:6033–6038

    Article  CAS  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Wallingford

  48. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  49. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  PubMed  CAS  Google Scholar 

  50. Tobe ML, Burgess J (1999) Inorganic reaction mechanisms, Addison Wesley Longman, Harlow, chap 3

  51. Frey U, Ranford JD, Sadler PJ (1993) Inorg Chem 32:1333–1340

    Article  CAS  Google Scholar 

  52. Lempers ELM, Reedijk J (1991) Adv Inorg Chem 37:175–217

    Article  CAS  Google Scholar 

  53. van Boom SSGE, Chen BW, Tauben JM, Reedijk J (1999) Inorg Chem 38:1450–1455

    Article  Google Scholar 

  54. Jaganyi D, Hofmann A, van Eldik R (2001) Angew Chem Int Ed Engl 40:1680–1683

    Article  PubMed  CAS  Google Scholar 

  55. Jaganyi D, Tiba F (2003) Trans Met Chem 28:803–807

    Article  CAS  Google Scholar 

  56. Hubbard CD, van Eldik R (2007) J Coord Chem 60:1–51

    Article  CAS  Google Scholar 

  57. Lippert B (1999) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley, Zurich, pp 183–221

  58. Arpalahti J, Lippert B (1990) Inorg Chem 29:104–110

    Article  CAS  Google Scholar 

  59. Caradonna JP, Lippard SJ (1988) Inorg Chem 27:1454–1466

    Article  CAS  Google Scholar 

  60. Mikola M, Kilika KD, Arpalahti J (2000) Chem Eur J 3404–3413

  61. Laidler KJ (1987) Chemical kinetics, 3rd edn. Harper and Row, New York, p 22

    Google Scholar 

  62. Volckova E, Dudones LP, Bose RN (2002) Pharm Res 19:124–131

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Science and Technology, Republic of Serbia (project no. 142008) and the Deutsche Forschungsgemeinschaft (SFB 583 “Redox-active metal complexes”). We thank Tim Clark for hosting this work at the CCC and the Regionales Rechenzentrum Erlangen (RRZE) for a generous allotment of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi van Eldik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2007_283_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugarčić, Ž.D., Rosić, J., Petrović, B. et al. Kinetics and mechanism of the substitution reactions of [PtCl(bpma)]+, [PtCl(gly-met-S,N,N)] and their aqua analogues with l-methionine, glutathione and 5′-GMP. J Biol Inorg Chem 12, 1141–1150 (2007). https://doi.org/10.1007/s00775-007-0283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0283-1

Keywords

Navigation